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Abstract—In this paper, we propose a general framework
for tuning component-level kinematic features using therapists’
overall impressions of movement quality, in the context of a
Home-based Adaptive Mixed Reality Rehabilitation (HAMRR)
system. We propose a linear combination of non-linear kinematic
features to model wrist movement, and propose an approach to
learn feature thresholds and weights using high-level labels of
overall movement quality provided by a therapist. The kinematic
features are chosen such that they correlate with the quality
of wrist movements to clinical assessment scores. Further, the
proposed features are designed to be reliably extracted from an
inexpensive and portable motion capture system using a single
reflective marker on the wrist. Using a dataset collected from
ten stroke survivors, we demonstrate that the framework can
be reliably used for movement quality assessment in HAMRR
systems. The system is currently being deployed for large-
scale evaluations, and will represent an increasingly important
application area of motion capture and activity analysis.

Index Terms—Stroke rehabilitation, movement quality assess-
ment, kinematic features.

I. INTRODUCTION

STROKE is the most common neurological disorder world-
wide [1] leaving behind a significant number of survivors

every year disabled with chronic impairments such as prob-
lems with vision, difficulty to formulate or understand speech,
or inability to move limbs. Even with persistent efforts to lower
blood pressure and reduce smoking, the incidence of stroke
remain high due to the ageing population, with nearly three-
quarters of stroke related events experienced by people over
the age of 65 [2], [3]. This increasing demand for rehabilitation
facilities has been seen as a significant healthcare problem
worldwide [4], [5]. In addition, studies indicate that the
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increasing healthcare costs paired with insufficient coverage
by insurance for long-term therapy treatment has often left
impairments untreated [6]. Hence, it is important to have well-
thought-out strategies to manage these stroke survivors by
providing low-cost long-term rehabilitation therapy for their
recovery.

Traditional rehabilitation therapy is usually composed of
repetitive movement tasks such as reaching and grasping an
object. A participant performs these movement tasks in a hos-
pital under the supervision of a physical therapist, who visually
monitors the quality of movement over time to provide per-
sonalized rehabilitation therapy. This laborious and expensive
process has motivated researchers to invent novel strategies to
accelerate hospital discharge without compromising on clinical
outcomes.

Challenges in Developing Component-level Kinematic
Features: Therapists are trained to assess the overall perfor-
mance of a task, which can also be achieved through existing
validated clinical measures such as the Wolf Motor Function
Test (WMFT) [7] and the Fugl-Meyer Assessment (FMA)
[8]. Such clinical measures do not provide enough infor-
mation about the component-level impairments, which will
be useful in providing focused rehabilitation. The motivation
of our research was to develop a computational framework
for component-level tuning of kinematic features such as
trajectory error, speed profile deviation, jerkiness, and seg-
mentation using the composite (overall) therapist impressions
of movement quality to drive the feedback module in the
HAMRR system.

One recurring problem in the stroke rehabilitation com-
munity is the general lack of consensus among physical
therapists in defining an ontology of component level labels for
movement quality, thereby leading to lack of training datasets
to develop algorithms for movement quality assessment. In
addition, therapists only provide composite assessments in-
dicative of quality of overall movement without any infor-
mation about components such as deviation in speed profile,
leading to a challenging problem to train the component-level
kinematic features, which are required to provide personalized
rehabilitation and facilitate active learning without therapist
supervision. An illustration of the above concept is shown in
Fig. 1, where the aim is to induce active learning by providing
auditory and visual feedback implying the impairments in
low-level components such as trajectory inaccuracy, tremor,
and segmentation [9]. In Fig. 1, (a) and (c) represent the
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Fig. 1: Exemplar visual feedback summaries based on low-level kinematic
analysis. (a) represents an efficient reach, (b) represents trajectory error to the
right. (c) is a representation of an efficient and consistent task completion and
(d) represents segmented movement.

Fig. 2: The Home-based Adaptive Mixed Reality Rehabilitation (HAMRR)
system designed for stroke survivors. The system uses four OptiTrack cameras
to track the wrist movements as well as a computer and speakers to provide
audio and visual feedback during therapy treatment. The table is designed
to accommodate custom touch and grasp objects for training reaches in
different orientations. In the inset, we see the placement of a wrist marker
on a participant performing reaching tasks to a cone. The system design is
discussed in detail in [9].

visual feedback seen during an efficient reach (reach trajectory
without any impairments) marked by a straight path of rocks or
a complete boat, while (b) represents a reach with trajectory
error on the right marked by curved path of rocks (in red),
and (d) represents a reach with segmentation error marked by
a broken boat.

Towards Home-based Rehabilitation Systems: Clinical
intervention alone is not completely effective for restoring
daily activity functionality in a stroke survivor [10]–[13].
A comprehensive study involving 1277 stroke survivors has

reported that an early hospital discharge and home-based
rehabilitation strategy resulted in reduced length of stay by
13 days, and overall mean costs being 15% lower compared
to standard care, without any significant effect on mortality or
clinical outcomes [14]. A similar long-term study has reported
significant reduction in hospital stay without any change in
health outcomes in stroke survivors who experienced home-
based rehabilitation compared to traditional rehabilitation care
[15].

Interactive neurorehabilitation systems which computation-
ally evaluate and deliver feedback based on a subject’s move-
ment performance have been utilized to provide home-based
rehabilitation care. With advances in 3D motion capture and
wearable sensor technology, researchers from various back-
grounds have developed objective measures for movement
quality assessment during and following rehabilitation [16]–
[20]. Virtual and mixed reality environments have been em-
ployed in novel stroke rehabilitation strategies [21]–[24]. In
this direction, Adaptive Mixed Reality Rehabilitation (AMRR)
system which integrates rehabilitation and motor learning
theories with motion capture, activity analysis, and multi-
media feedback [25], [26], has been shown as an effective
rehabilitation system in helping improve the kinematic and
functional performance of a stroke survivor’s upper extremity
in a hospital setting. Examples of visual feedback for active
learning using the home system are shown in Fig. 1. In addi-
tion, accommodating heavy marker-based systems in a home-
based setting is unrealistic, as inaccurate placement of mark-
ers can negatively affect the movement quality assessment
framework and place a heavy burden on the stroke survivor
and/or caregiver. In recent years, the focus of rehabilitation
research has been towards devising multi-modal interventions
and accompanying tools to assist home-based therapy [9], [25],
[27], thereby supplementing traditional therapy received in
the hospital. A solution to this was proposed in [9], where a
single reflective marker was placed on the participant’s wrist
to track the movement (see Fig. 2). A recent study has shown
that a single marker-based system (marker on the wrist) can
achieve comparable performance levels of movement quality
assessment to a heavy marker-based system [17].

In this paper, our aim is to use the composite labels provided
by therapists’ impressions to learn the underlying movement
components. We propose several kinematic features and learn
the associated thresholds and weights using composite labels
for reach data. This research facilitates better understanding
of the underlying components defining movement quality and
also the generation of a ‘cumulative score’ for movement
quality, which can aid physical therapists in visual monitoring
during supervised rehabilitation therapy.

Contributions: Our aim is to decompose the movement
quality score (given by therapists) into its constituent kine-
matic components. We assume a linear relation between kine-
matic features and composite movement quality score. This
paper has two main contributions: 1) propose component-level
kinematic features for movement quality assessment of wrist
movement, 2) propose a generic framework for tuning the
thresholds and weights associated with each of these kinematic
features using movement quality labels provided by therapists.
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II. RELATED WORK

Quantifying movement quality is useful for physical ther-
apists to provide improved and personalized rehabilitation
therapy. Several quantitative scales for movement quality
assessment have been proposed, including the FMA [8] and
the WMFT [7]. For example, the WMFT has been used
to quantify the upper extremity motor ability through timed
and functional tasks [28]. However, these methods rely on
visual monitoring of movements by experienced and trained
physical therapists. Hence, these methods can be subjective, as
a therapist will apply their individual training and impressions
when evaluating a participant’s movement quality. Developing
an objective computational framework for movement quality
assessment will be beneficial, thereby minimizing the influence
of a therapist.

The focus of existing approaches for movement quality
assessment has been towards finding typical patterns in kine-
matic attributes which differ between healthy and impaired
participants. Kinematic Impairment Measure (KIM) proposed
by Chen et al. [16] employs 33 kinematic attributes derived
from a heavy-marker based system in a hospital setting
to quantitatively evaluate the movement quality. This study
showed that the weighted average of individual kinematic
attributes was strongly correlated with the WMFT scores.
Similar work using kinematics to model the smoothness of
the movement have also been explored [29], [30]. In a similar
study, it was shown that features derived from wearable sensor
data can be used to estimate the FMA score [31].

Rehabilitation robotics has gained a lot of attention in
quantification of motor functionality due to its ability to offer
objective and repeatable therapy treatment [32]–[38]. Linear
regression model-based kinematic scales were developed using
the MIT-Manus robot to achieve highly a repeatable and high
resolution framework for quantification of motor performance
[39]. Another robotics-based rehabilitation technique proposed
four measures showing correlation with clinical measures such
as FMA, MAL, Action Research Arm Test, and Jebsen-Taylor
Hand Function Test [40]. A recent work using movement
time, trajectory length, directness, smoothness, and mean and
maximum velocity claims that such kinematic features can be
effectively used to assess upper limb motor recovery and is
linked to FMA score [41].

Nonlinear dynamical analysis methods have been employed
to model the variability in repetitive movements, which are an
integral part of rehabilitation therapy [18], [42]. To address
the drawbacks of traditional nonlinear dynamical measures, a
shape theory based dynamical analysis framework for move-
ment quality assessment was proposed [17]. This study also
demonstrated that the information contained in a single marker
on the wrist is sufficient to achieve comparable performance
levels to a heavy marker-based system in movement quality
assessment.

The outline of the paper is as follows: The design of the
home-based rehabilitation system and protocol for collecting
reach data from stroke survivors are discussed in sections III
and IV, respectively. In section V, we propose component-
level kinematic features and a framework to tune the associated

thresholds and weights using overall therapist impressions for
movement quality. The results of the proposed frameworks
in section V on data collected from ten stroke survivors are
discussed in section VI.

III. SYSTEM DESIGN

The HAMRR system has four Natural Point Opti-Track
cameras facing down on a table to track a single reflective
marker placed on the participant’s wrist (wrist marker). The
selection of the wrist marker was motivated by previous
investigations indicating that the wrist trajectory is the most
informative joint about the reach trajectory [16], [17], [23],
[43], [44]. The system also tracks torso movement using
four reflective markers attached to a badge worn on the
left side of the participant’s chest. Effective upper extremity
rehabilitation requires monitoring of such aspects of the body
movement to evaluate the extent participant’s compensation
while performing a task. In this study, we focus solely on the
data collected from the wrist marker.

The table houses a contact switch rest position pad and can
accommodate a target location of the cone object based on the
participant’s reaching ability. While we only consider reaching
tasks for the cone object located on the left of a participant,
the system was designed to accommodate custom touch and
grasp objects for training reaches in different orientations. The
system is shown in Fig. 2 and detailed information of the
system design can be found in [9]. The main objective of this
design was to be able to install the system in a participant’s
home for long term therapy treatment, which prohibits the use
of a heavy marker-based system.

IV. DATA COLLECTION

Therapists undergo training to assess both the overall perfor-
mance of a task and monitor some individual coarse aspects
of movement for a set of reaches. While validated clinical
measures exist for assessing overall task performance, no such
measures currently relate these to performance of component-
level kinematic attributes for an individual reach. Therefore,
in this study we have collected therapist ratings for quality
of wrist trajectory for each reach in an attempt to build a
computationally generated component-level assessment that
correlates with therapist impressions.

The dataset consists of reaching tasks performed by a total
of ten participants (refer to Table I for demographics) to
an on-table cone left of the participant’s rest position. Each
participant performs five reaches in each of four sessions. An
iPad application was developed to assist therapists in adminis-
tering the system experience questionnaire, recording videos of
reaching tasks, and providing movement quality labels. These
videos were later segmented to contain individual reaches,
which were randomized across participants and provided to
two physical therapists (each therapist would rate a reach
movement which was not repeated by the other therapist)
to rate each reach in terms of overall performance of the
task. Overall reaching performance was rated on a scale from
1-5 based on the therapist’s impression of the participant’s
performance, where a 1 denotes that the participant could
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Name Age Gender
Time
since

stroke*
Lesion Location FMA

Score(/66)

S1 63 Male 14 Left posterior
frontal ischemic 37

S2 69 Male 44 Left ICH
(fronto-parietal) 50

S3 65 Male 31 AVM rupture 47

S4 47 Male 26 Left pontine
infarct 47

S5 56 Male 28 Left Internal
Capsule 44

S6 49 Male 18
Left MCA

(Middle cerebral
artery)

37

S7 64 Female 6 Unknown 28
S8 27 Male 12 Unknown 26

S9 50 Male 15
Left basal

ganglia
hemorrhage

30

S10 44 Female 13 Ischemic left
pons 29

TABLE I: The demographics and FMA score of the stroke survivors who
participated in our study and have experienced the HAMRR system. All
participants had impairment in their right hand with one stroke event.
*Time since stroke event is in months.

not complete the task and a 5 denotes that the participant
performed the task with the same quality of performance as
the therapist if he/she were to perform it. This rating scale was
adapted from the WMFT Functional Assessment Score [7] by
rehabilitation experts who collectively created a rubric for the
purposes of this study.

V. QUALITY ASSESSMENT OF WRIST TRAJECTORY

In this section, we introduce the framework for quantitative
assessment of quality of wrist trajectory using kinematic anal-
ysis. We learn kinematic features using composite movement
quality labels provided by therapists. The proposed kine-
matic features were designed to evaluate the movement along
five aspects of impairment with respect to hand trajectory
performance: curvedness, fastness, slowness, smoothness and
segmentation (see Fig. 3 for pictorial representation of these
features). Each of these kinematic features have a unique
threshold (Ti) which is difficult to define, and hence we
use optimization theory to estimate these values. We also
learn the weights in our proposed linear model using the
same framework which is discussed in section V-G. The steps
involved in feature extraction are explained below.

A. Choice of Kinematic Features

The movement during reach and grasp action is thought
to be controlled by considering the end-point (wrist) as the
guiding reference [23], [43], [44]. Hence, the end-point acts
as the interactor between the environment and the action goal
to reach the target. Further, studies indicate that the end-point
trajectory data from multi-joint movement such as reach and
grasp (e.g., movements utilizing both shoulder and elbow)
consistently have nearly invariant kinematic characteristics,
such as straight-line trajectory paths and bell-shaped veloc-
ity profiles [45]–[47]. The findings from these studies have
motivated our selection of kinematic features to represent the
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reach and grasp action focusing significantly on the end-point
using trajectory error, velocity profile deviation, jerkiness and
segmentation.

B. Pre-processing of Trajectories

The three-dimensional positions of the wrist marker p(t) =
[x(t), y(t), z(t)], t = 0, . . . , τ were recorded from the
start of the movement to the target grasp state. The coor-
dinate system was rotated such that p(0) was the origin,
X − Z plane was the horizontal plane and the straight line
connecting p(0) and p(τ) lies along the new Z-axis. This
in effect re-parameterizes (after normalization) the trajec-
tory [x(t), y(t), z(t)], t = 0, . . . , τ to [x′(z), y′(z)], z =
0, . . . , 1. This re-parameterization works without introducing
significant ambiguity in our experiments due to the strong
directionality of the reach action. The Z-axis was further
quantized into N = 50 bins, thereby transforming the tra-
jectory to [x′(n), y′(n)], n = 0, . . . , N − 1. We now have
a vector representation of the trajectory suitable for real-time
comparisons. For every new sequence, the 3-D positions from
the start of the movement to the end were rotated from the
global coordinate to the new coordinate system. This rotated
and normalized axes facilitates easier calculation of deviation
of kinematic features from a reference trajectory (efficient
reach trajectory collected from mean-age matched unimpaired
participants).

C. Trajectory Error

Trajectory error is a measure of spatial deviation of the
wrist trajectory from the reference trajectory. For every point
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in the reach trajectory, horizontal error (Ehor) and vertical
error (Evert) were defined as

Ehor(i) = x(i)− xref (i), i = 0, . . . , Ns − 1 (1a)

Evert(i) = y(i)− yref (i), i = 0, . . . , Ns − 1 (1b)

where Ns is the number of points in the reach trajectory. A
thresholded error function was calculated as

Êhor(i) =

{
Ehor(i) if Ehor(i) > T1

0 otherwise.
(1c)

Similarly,

Êvert(i) =

{
Evert(i) if Evert(i) > T1

0 otherwise.
(1d)

Confidence values for the movement being curved were
estimated as

Ccurvedx =

∑
<i>

|Êhor(i)|∑
<i>

|Ehor(i)|
(1e)

Ccurvedy =

∑
<i>

|Êvert(i)|∑
<i>

|Evert(i)|
(1f)

The final confidence of curved movement was a combina-
tion of the above two confidences,

CcurvedT1
=

{
λ1 if λ1 > 2λ2

min(1.5λ1, 1) otherwise
(1g)

where λ1 = 1−max(Ccurvedx , Ccurvedy ),
λ2 = 1−min(Ccurvedx , Ccurvedy ).

D. Speed Profile Deviation

It is a measure of deviation of the speed profile from
the reference speed profile (speed profiles collected from 10
unimpaired participants to generate a reference). For a given
reach trajectory, a point-to-point comparison of speeds with
the reference speed profile was calculated. The speed vector
for the reference and test data are denoted as vref (i) and
v(i) respectively and was calculated as the first derivative of
the position vector. The thresholded speed vector for fastness
feature was calculated as

v̂f (i) =

{
v(i) if v(i)− vref (i) > T2

0 otherwise
(2a)

The confidence score for movement being too-fast was
computed as Cfast given by

CfastT2
= 1−

∑
<i>

v̂f (i)∑
<i>

v(i)
(2b)

Similarly, the thresholded speed vector for slowness feature
is given by

v̂s(i) =

{
v(i) if v(i)− vref (i) < T3

0 otherwise
(2c)

The confidence score for movement being too-slow was
calculated as Cslow given by

CslowT3
= 1−

∑
<i>

v̂s(i)∑
<i>

v(i)
(2d)

E. Jerkiness

The jerkiness (or smoothness) feature is a measure of vari-
ations in the velocity profile. An ‘efficient’ reach movement
should have a smooth velocity profile with an accelerating
pattern followed by a decelerating pattern without any jerks.
Jerkiness of a movement was calculated using the method
described in [16] (similar to [29]) and is given by

J =

∫ teom

tsom

√(
d3x
dt3

)2

+

(
d3y
dt3

)2

+

(
d3z
dt3

)2

dt (3a)

where x, y and z are 3-D coordinates of the position of
participant’s wrist. tsom is the time index corresponding to
the start of the movement and teom is the time index of the
end of the movement. The thresholded jerkiness function was
calculated as

Ĵ(i) =

{
J(i) if J(i) > T4

0 otherwise
(3b)

The confidence score for movement being jerky was calcu-
lated as

CjerkT4
= 1−

∑
<i>

Ĵ(i)∑
<i>

J(i)
(3c)

F. Segmentation

A movement is termed as ‘segmented’ if the elbow does
not open in synchrony with the shoulder moving forward.
Instead, the forward movement of the shoulder and the opening
of the elbow happens in sequence, resulting in a disjointed
movement (or presence of submovements). Rohrer et al. [48]
have shown how paretic movement can be represented by
submovements using MIT-MANUS and InMotion2 robots,
which allows motion within a horizontal plane. An accurate
analysis of this phenomenon (presence of submovements)
requires tracking of both shoulder and elbow in addition to
the wrist. In the proposed home-based rehabilitation system,
this was not possible with the one marker sensing solution,
and we wanted to learn if such movements can be described
computationally using only the wrist marker.

After consultation with domain experts, it was found that
segmented movements give rise to notches (sudden change in
direction) in the wrist trajectory. These notches can be quite
subtle and often occur towards the end of the movement. We
quantify segmented movements by calculating the following:

1) The number of times the movement changes its turning
direction
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2) The magnitude of direction change
3) The ratio of the magnitude of direction change
We project the 3D trajectory onto the X-Z and Y-Z planes

to detect the direction changes (notches). In the projection
onto the X-Z plane, we first compute displacement vectors
from the spatial locations. The direction change was quantified
as the signed angle (αxz(i)) between successive displacement
vectors. The sign of the angle is positive if the displacement is
clockwise from the previous displacement vector and negative
if it is counter-clockwise. Using this, the number of significant
changes in turning direction of the movement is calculated
(NC), and the corresponding confidence is calculated as

Cseg1,xz =

{
1− e−(a·NC)b if NC > Nref

0 otherwise
(4a)

The magnitude of direction change is computed as S =∑
<i> |αxz(i)|, and the corresponding confidence score was

given by
Cseg2,xz = 1− e−(a·λS)b (4b)

λS =

{
1− S/refxz if S < refxz

0 otherwise
(4c)

The ratio of magnitude of direction change is defined as
γ = |

∑
αxz(i)|∑
|αxz(i)| , and the corresponding confidence score was

computed as

Cseg3,xz =

{
1 if γ < γref

1.47 ∗ (1− γ) otherwise
(4d)

The final confidence for segmentation of the projected
movement on X− Z plane is computed as

Cxz = Cseg1,xz · Cseg2,xz · Cseg3,xz (4e)

Similarly, we can compute Cyz in the Y-Z plane. Let
β1 = 1 −max(Cxz, Cyz), β2 = 1 −min(Cxz, Cyz). The final
confidence of segmented movement is given by

CsegT5
=

{
β1 if β1/β2 > T5

min(1.5β1, 1) otherwise
(4f)

The thresholds T1, . . . , T5 were difficult to define and hence
optimal values for these thresholds was estimated using move-
ment quality label provided by therapist. Thresholds such as
Nref , refxz, γref were determined from the data collected
from unimpaired participants. The constants a and b were
selected through empirical observation. The confidence scores
range from 0 to 1, with 0 indicating maximum impairment
and 1 indicating movement being similar to an unimpaired
participant’s reach.

G. Estimation of Optimal Weights and Thresholds

A physical therapist rating the quality of reach trajectory
will pay careful attention to many kinematic attributes, in-
cluding speed, trajectory and jerkiness. We believe that a linear
combination model of the non-linear kinematic features will be
correlated with the therapist rating. In this paper, we propose

a linear model of kinematic features for movement quality
assessment by posing an optimization problem to determine
the thresholds and weights associated with each kinematic
feature in the linear combination model. Hence, the equation
for the linear model for movement quality assessment for the
wrist trajectory can be written as

{
w1C

curved
T1

+ w2C
fast
T2

+ w3C
slow
T3

+ w4C
jerk
T4

+

w5C
seg
T5

}
≈ Rwj (5)

where, w1, . . . , w5 are weights for each of the confidence
scores of kinematic attributes curvedness, fastness, slowness,
jerkiness and segmentation, respectively. Rwj is the therapist
rating for quality of wrist trajectory. The thresholds T1, . . . , T5
bound a region called ‘zero-zone’ where the attribute value
is termed ‘efficient’ (indicating a reach movement without
any impairments). For example, eq. (2a) has a threshold T2
which represents a ‘zone’ of ideal speed profiles. Eq. 5 is
pictorially depicted in Fig. 3. The aim here is to minimize
the error between cumulative score and therapist rating in L1

sense to estimate thresholds and weights associated with each
kinematic feature. The cost function can be written as

P1 : {w1, . . . , w5, T1, . . . , T5}opt =

arg min
w1,...,w5,T1,...,T5

∑
<j>

|
5∑
i=1

wiC
i
(Ti)
−Rwj |

subject to wi ≥ 0,

0 ≤ Ti ≤ 10.
(6)

This cost-function is difficult to optimize, and is non-
convex. In order to solve this optimization problem, we use
the active-set method [49], because of its reduced complexity
of the search, as the algorithm uses a subset of inequalities
while searching the solution. We use the implementation of
the active-set method available in Matlab.

VI. EXPERIMENTAL RESULTS

In order to measure the efficacy of the proposed opti-
mization procedure, we look at the output (cumulative score)
generated by the forward-model in eq. 5. The results of our
analysis using the linear combination of kinematic features for
movement quality assessment of the wrist trajectory are shown
in Fig. 4. The information about participants who experienced
our system is tabulated in Table I. Each participant performed
20 repetitions of reach and grasp to a cone target, except
participants S7, S8, and S10 who performed 5, 5, and 15 rep-
etitions, respectively. Fig. 4 shows the comparison between the
movement quality scores provided by a trained physical ther-
apist against the cumulative score predicted by our proposed
framework. If the feature thresholds and combination weights
were tuned, we expect the cumulative predicted scores to be
correlated with the therapist ratings. The Pearson correlation
coefficient between the cumulative scores and the therapist
ratings was found to be 0.6 with a significant p-value (p <
0.001). The results of our analysis using the linear combination
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therapist rating indicates that correlation coefficient increases from 0.13 to 0.6 with a significant p-value and increased slope.
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Fig. 6: Linear regression plots for various low-level kinematic features used in our linear model for movement quality assessment with estimated thresholds.
(a) Curvedness, (c) Too-slow and (d) Jerkiness show positive and significant correlation with therapist rating. (b) Too-fast shows a negative and significant
correlation. (e) Segmentation shows a weak correlation with therapist rating.
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Parameter Optimized Value
T1 0.13m
T2 0.2m/s
T3 0.1m/s
T4 2.5m/s3

T5 0.99
w1 2.5
w2 2.5
w3 1.8
w4 0.05
w5 0.05

TABLE II: The optimized values for thresholds and weights in the proposed
linear model for movement quality assessment.

of kinematic features for quality assessment of wrist trajectory
before and after optimization is shown in Fig. 5. We see that
before optimization, the predicted movement quality scores of
all classes (therapist ratings from 1 to 5) are overlapping (Fig.
5a). The use of optimized weights and thresholds resulted in
an increased correlation between cumulative predicted score
and therapist rating from 0.13 to 0.6. The contribution of each
of the low-level kinematic features with optimized threshold
towards movement quality assessment is shown in Fig 6. A
linear regression analysis between each kinematic feature and
therapist rating shows that curvedness, too-slow and jerkiness
show a significant positive correlation, while too-fast and
segmentation respectively show negative and weak correlation.
The weak correlation between segmentation and therapist rat-
ing could be due to the fact that the segmentation feature needs
data from elbow and shoulder joints, which is not available
in our single marker-based system. The obtained values for
thresholds and weights after solving the optimization problem
P1 are listed in Table II. Kinematic features curvedness and
too-fast have the highest weight of 2.5 in our linear model,
with jerkiness and segmentation having lowest weight. It is
evident from these results that the estimation of weights and
thresholds of linear model using the proposed framework
provides a novel methodology to combine low-level kinematic
features to generate a cumulative score for movement quality
of wrist trajectories. Furthermore, the cumulative score aligns
with the ratings given by a therapist, which makes it a suitable
tool to assist physical therapists in assessing the movement
quality during supervised rehabilitation, leading to better eval-
uation and adaptation of therapy. The estimation of thresholds
for low-level kinematic features facilitates better evaluation
of components of movement (e.g., curvature, segmentation),
thereby improving the efficacy of audio and visual feedback
in our home-based rehabilitation system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the problem of developing
a computational framework for movement quality assessment
suitable for home-based rehabilitation systems using kinematic
analysis. We have proposed and evaluated a linear model
of component-level kinematic features for movement quality
assessment of the wrist. We propose a framework to learn these
component-level kinematic features indicating impairments in
underlying movement components using composite therapist
impressions of movement quality. Our results indicate that

the proposed framework can be used to provide improved
and efficient audio and visual feedback indicative of the
impairments in component-level kinematics of a participant’s
reach. Further, this framework can be used to generate a
cumulative score indicative of overall reach quality, which
can be used to aid therapists during supervised rehabilitation.
It should be noted that kinematic analysis of movement has
an inherent requirement of “reference” trajectory data, which
is difficult to define for complex movements (e.g., lift and
transport an object) due to variability. Since we are interested
in analyzing such complex movements of stroke survivors,
our future directions will be focused towards developing
suitable quantitative frameworks for modeling such complex
movements.

Monitoring body movement during upper extremity tasks is
necessary to determine the extent to which the stroke survivor
is using body compensation. Preliminary work using the data
collected from the marker plate worn by the participant (not
presented here due to scope) is promising for applying similar
methods to aspects of movement beyond wrist trajectory
performance. However, the consistent marker placement on
the torso requires assistance from a caregiver, and we believe
markerless solutions for monitoring the torso movements, such
as using the Kinect, could provide a robust alternative. This
points to several interesting directions of future work. From
a sensor fusion perspective, one can explore the utility of
multiple Kinect sensors and study the effects on obtaining high
fidelity tracking results. Such efforts are already underway,
with early commercial systems that are limited to a few
gestures [50]. Accuracies of such multi-Kinect systems and
its efficacy for rehabilitation systems are still unknown. We
are currently working on pilot experiments with Kinect and
mono-vision systems.

For the computer vision and machine learning communities,
this application area opens up several interesting questions
related to the design of robust features for movement quality
analysis. Significant research in computer vision has been
focused on activity and gesture recognition and not much on
measures for ‘quality’ of the movement. While this problem
is traditionally addressed in the bio-mechanics community, the
tools developed there are based on precise clinical measure-
ments of biomechanics. These tools have limited applicability
in home-based deployments, where data is of significantly
lower quality. Thus, one needs to rely on larger datasets
and advanced feature selection and machine learning tools to
design movement quality measures. This can form the basis
of several interesting research questions in the future.
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