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Abstract
In this paper, we propose a novel shape-theoretic frame-

work for dynamical analysis of human movement from 3D
data. The key idea we propose is the use of global descrip-
tors of the shape of the dynamical attractor as a feature for
modeling actions. We apply this approach to the novel ap-
plication scenario of estimation of movement quality from
a single-marker for future usage in home-based stroke re-
habilitation. Using a dataset collected from 15 stroke sur-
vivors performing repetitive task therapy, we demonstrate
that the proposed method outperforms traditional methods,
such as kinematic analysis and use of chaotic invariants,
in estimation of movement quality. In addition, we demon-
strate that the proposed framework is sufficiently general
for the application of action and gesture recognition as well.
Our experimental results reflect improved action recogni-
tion results on two publicly available 3D human activity
databases.

1. Introduction

Human movement analysis from portable 3D sensing
systems has opened the door to several applications in
home-based health monitoring and well-being. In this pa-
per, we focus our interest towards movement quality as-
sessment for stroke rehabilitation using a single marker-
based 3D motion capture system. A comprehensive study
conducted by the World Health Organization reveals that
approximately 15 million people suffer a stroke world-
wide each year, making it the most common neurologi-
cal disorder [16]. Stroke leaves millions of people dis-
abled with chronic impairments often left untreated due
to insufficient coverage by insurance for long-term treat-
ment. Recent directions in stroke rehabilitation research
have been focused on the development of portable and
personalized rehabilitation systems [4], which can provide

low-cost home-based rehabilitation for long-term therapy
administered at home. With advances in 3D motion capture
technology, researchers from various backgrounds, includ-
ing computer vision, have shown interest in the develop-
ment of objective measures for improvement in movement
quality assessment during and following rehabilitation.

Figure 1: Home-based adaptive
mixed reality rehabilitation systems
designed for stroke survivors.

Visual monitoring of
movements by expe-
rienced and trained
physical therapists has
been the standard pro-
tocol for evaluating
movement quality for
decades [14]. Widely
accepted quantitative
scales for rating move-
ment such as the Fugl
Meyer Test [10] and the
Wolf Motor Function
Test (WMFT) [29], have
proven to be useful and
effective in evaluating
movement quality. For
example, the WMFT has been used to quantify the upper
extremity motor ability through timed and functional tasks
[17]. Since these methods are based on visual monitoring
for movement evaluation, they can be subjective, as each
evaluator rely on their individual training and impressions
for evaluating a subject’s movement quality. This laborious,
time consuming and expensive task would greatly benefit
from the development of a non-subjective computational
framework for movement quality assessment. The aim here
is to develop standardized methods to describe the level
of impairment across subjects. The Wolf Motor Function
Test (WMFT) quantifies the upper extremity motor ability
through timed and functional tasks. Kinematic Impairment
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Measure (KIM) by Chen et al. [8] employ kinematics using
a heavy marker-based system to quantitatively evaluate
the quality of movements (e.g., reach and grasp). While
a heavy marker-based system provides one with rich
data, there is an increasing interest to deploy simple and
reduced marker-based systems at home to reduce the cost
of rehabilitation therapy. One example of a single marker
based system is shown in Figure 1, which shows a home-
based adaptive mixed reality rehabilitation system for
upper extremity stroke rehabilitation [4]. In this paper, we
develop a novel computational framework for movement
quality assessment, combining the theoretical concepts of
dynamical system analysis and ideas in shape theory. We
show the utility of the proposed action modeling framework
for quantifying the quality of reaching tasks using a single
marker on the wrist, and obtain comparable results to a
heavy marker-based setup.

Related Work: Human activity analysis has attracted the
attention of many researchers providing extensive literature
on the subject. A detailed review of approaches in liter-
ature for modeling and recognition of human activities is
discussed in [2, 11]. Since our present work is related to
dynamical system analysis for action modeling, we restrict
our discussion to related methods.

Human actions have been modeled using dynamical sys-
tem theory in computer vision [3, 6] and biomechanics
[9, 19, 25]. Differential equations can be used to model such
a system, which requires access to all independent variables
of the system. This approach would facilitate an under-
standing of the system behavior and also allow for the pre-
diction of future states using present and past state informa-
tion. However, this is not realizable in practice, as it is ex-
tremely hard to determine the independent variables and the
interactions governing the dynamics of human actions. Fur-
ther, the task of modeling human actions for action recog-
nition is non-trivial due to several factors, including inter-
class similarities between actions (e.g., running and walk-
ing), intra-class variations due to multiple strategies for an
action (e.g., dance) and inter-subject variations. In previous
works, human actions have been modeled with the assump-
tion that the underlying dynamical system is linear [6] or
nonlinear [3]. Chaotic invariants, like largest Lyapunov ex-
ponent have been extensively used to model human actions
[3, 9, 19, 25]. However, [20] and [27] have shown that these
nonlinear dynamical measures need large amounts of data
to produce stable results. We explore the use of proposed
action modeling framework for action recognition with our
experiments demonstrating the strength and flexibility of
our framework. It should be noted that we are not trying
to solve the tracking problem and therefore we assume that
the trajectories of skeletal joints are available.

The focus of existing approaches for human movement
quality assessment has been towards finding typical patterns

in kinematics which differ between healthy and impaired
subjects. While these approaches are successful in giving
an insight into understanding human movement, they fail
to utilize the inherent dynamical nature of the movement.
Rehabilitation therapies are composed of repetitive move-
ments (e.g., reach to a target) that are strongly periodic (see
Figure 2) with some variability. Traditional methods have
assumed that this variability arises from noise in the sys-
tem. However, it is evident that variability is an integral part
of repetitive movements due to the availability of multiple
strategies for the movement. Also, it is believed that vari-
ability produced in human movement is a result of nonlinear
interactions and have deterministic origin [25]. Extensive
research has been carried out to model this variability using
nonlinear dynamical system theory [9, 19, 25].

In the broader vision community, Bissacco et al. [6] used
linear dynamical systems to approximate the dynamics of
human gait and learn parametric models. Ali et al. [3] used
chaotic invariants like largest Lyapunov exponents, correla-
tion dimension and correlation integral to analyze the non-
linear dynamics of human actions. Junejo et al. [12] used
self-similarity matrix, a graphical representation of distinct
recurrent behavior of nonlinear dynamical systems, to learn
an action descriptor. Recently Bregonzio et al. [7] pro-
posed the use of global spatio-temporal distribution of in-
terest points for action recognition from 2D videos.

Contributions: We treat the reconstructed phase space of
a dynamical system as a 3D point cloud and extract discrim-
inative point cloud shape features. We show how the pro-
posed framework is useful for movement quality assessment
for application in home-based stroke rehabilitation, action
recognition and gesture recognition.

Outline: In section 2, we discuss theoretical concepts of
phase space reconstruction and methods to estimate the pa-
rameters for the same. We propose our framework for mod-
eling human actions in section 3. In section 4, we present
results on extensive experiments carried out on stroke reha-
bilitation dataset [8], motion capture dataset [3] and MSR
Action3D dataset [15].

2. Phase Space Reconstruction
The phase space is defined as the space with all possi-

ble states of a system. In a deterministic dynamical sys-
tem that can be mathematically modeled, future states of
the system can be determined using present and past state
information. However, for human actions, the system equa-
tions are complex. Furthermore, the home-based setting for
stroke rehabilitation (single marker-based system) does not
allow us to observe all variables of the system. To address
these problems, we have to employ methods for reconstruct-
ing the attractor to obtain a phase space which preserves the
important topological properties of the original dynamical



system. This process is required to find the mapping func-
tion between the one-dimensional observed time series and
the m-dimensional attractor, with the assumption that all
variables of the system influence one another. The concept
of phase space reconstruction was explained in the embed-
ding theorem proposed by Takens, called Takens’ embed-
ding theorem [26]. For a discrete dynamical system with
a multidimensional phase space, the time-delay vectors can
be written as

Xi(n) = {xi(n), xi(n+ τ), · · · , xi(n+ (m− 1)τ)} (1)

where ‘m’ is the embedding dimension and ‘τ ’ is the em-
bedding delay. These parameters should be carefully se-
lected in order to facilitate a good phase space reconstruc-
tion. For a sufficiently large m, the important topological
properties of the unknown multidimensional system are re-
produced in the reconstructed phase space. The embedding
method has proven to be useful, particularly for time se-
ries generated from low-dimensional deterministic dynam-
ical systems, by providing a way to apply theoretical con-
cepts of nonlinear dynamical systems onto observed time
series. The embedding theorem does not suggest methods to
estimate the optimal values for m and τ . We use false near-
est neighbors [13] approach to estimate m and the first zero
crossing of the autocorrelation function [23] to estimate τ .
Figure 2 shows an example of phase space reconstruction
from a one-dimensional observed time series.

Embedding Dimension: The aim here is to estimate an
integer embedding dimension which can unfold the attrac-
tor thereby removing any self-overlaps due to projection of
the attractor onto lower dimensional space. Hence, the em-
bedding dimension can be defined as the minimum dimen-
sion required to unfold the attractor completely. The false
nearest neighbor approach finds this minimum embedding
dimension to remove any false nearest neighbors (neighbors
due to projection onto lower dimension). Consider a vector
in reconstructed phase space in dimension m given by

X(k) = {x(k), x(k + τ), · · · , x(k + (m− 1)τ)} (2a)

Consider a nearest neighbor in the phase space given by

XNN (k) = {xNN (k), xNN (k+τ), · · · , xNN (k+(m−1)τ)} (2b)

If the vector XNN (k) is a true neighbor of X(k), then it
should be because of the underlying dynamics. The vector
XNN (k) can be a false neighbor of X(k) when dimension
m is unable to unfold the attractor. Hence, moving to the
next dimension m + 1 may move this false neighbor out
of the neighborhood of X(k). This process of finding false
neighbors to every vector Xi(k) sequentially removes self-
overlaps and identifies m where the attractor is completely
unfolded. The embedding dimension m suggested by the
false nearest neighbor algorithm for exemplar trajectories

was either 3 or 4 on stroke rehabilitation database. We select
a constant embedding dimension m = 3 to reconstruct all
relevant phase space. Even with this fixed value of m, we
obtain excellent results as shown in our experiments.

Embedding Delay: Theoretically, the embedding process
allows any value of τ if one has access to infinitely accu-
rate data ([1], chap. 3). Since this is practically impossi-
ble, we try to find a value τ which makes the components
of the vector {x(k), x(k + τ), x(k + 2τ)} in the embed-
ding sufficiently independent. A low value of τ makes ad-
jacent components to be correlated and hence they cannot
be considered as independent variables. On the other hand,
a high value of τ may make the adjacent components un-
correlated (almost independent) and cannot be considered
as part of the system that supposedly generated them. The
shape of the embedded time series will critically depend on
the choice of τ [23]. A good selection of τ should ensure
that the data are maximally spread in phase space resulting
in smooth phase space reconstruction. We use the first zero-
crossing of the autocorrelation function as an estimate of τ
as suggested in [23] for strongly periodic data, which is a
suitable choice for our experiments (see Figure 2).

3. Shape Features from Attractors

In this section, we present a framework which combines
the strong theoretical concepts of nonlinear dynamical anal-
ysis and ideas in shape theory to effectively represent hu-
man movement. From Figure 2, the ‘shape’ of the recon-
structed phase space can be seen as a discriminative feature
for classification between unimpaired and impaired sub-
jects. Shape analysis of 3D surfaces is a well-studied prob-
lem in the computer vision community. Osada et al. [18]
present a method for finding a similarity measure between
3D shapes by computing shape distributions of the 3D sur-
face sampled from the shape function by measuring their
global geometric properties. We use the shape distribution
of reconstructed phase space as the dynamical feature in our
experiments. Similar to the D2 shape function from [18],
we measure the distance between two random vectors of
the attractor (phase space) which can be represented as

Dij = ||Xi −Xj ||2 (3)

where Xi and Xj are embedding vectors in the recon-
structed phase space. A set of these distances for randomly
chosen embedding vector pairs are computed. From this set,
we construct a histogram by counting the number of sam-
ples which fall into each of B = 50 fixed sized bins. Several
metrics exist in literature to calculate distance between his-
tograms including chi-squared statistic (χ2 distance), Bhat-
tacharyya distance [5], Riemannian analysis [24] and Earth
Mover’s Distance (EMD) [21]. In our experiments, we use
Euclidean distance as our similarity measure (see Figure
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Figure 2: Proposed framework for movement quality assessment and action recognition by extraction of dynamical shape feature from reconstructed phase
space. (a) shows the time series of x-location of wrist marker; its respective reconstructed phase space is shown in (b). These two exemplar trajectories are
collected from the stroke rehabilitation dataset [8] and belong to unimpaired and impaired subjects respectively. The corresponding dynamical shape feature
represented by shape distribution is shown in (c). Similarity measure (e.g., Euclidean distance) can be used to classify these trajectories.

2) to measure the distance between histograms and classify
movements.

Test on Models: The framework was tested on Lorenz
and Rossler models to find whether the shape feature can
be effectively used to classify differences in shape of recon-
structed phase space of nonlinear dynamical systems. We
compare the performance of the proposed framework with
that of largest Lyapunov exponents. Chaos theory has found
its application in the analysis of chaotic dynamical systems.
In comparison, largest Lyapunov exponent is a widely used
measure of chaos in various engineering applications, in-
cluding computer vision [3, 22]. A practical method for
estimating the largest Lyapunov exponent from a time se-
ries proposed by Rosenstein [20] quantifies chaos by mon-
itoring the rate of divergence of closely spaced trajectories
over time. The algorithm claims to be fast, easy to imple-
ment and robust to changes in embedding dimension, size of
dataset, embedding delay and noise level. Rosenstein’s al-
gorithm was developed to address the limitations of Wolf’s
algorithm [28] and has been shown in [27] that it is more ro-
bust to changes in data length than Wolf’s algorithm. How-
ever, experimental results on Lorenz and Rossler models
for different time series lengths (N) with fixed embedding
dimension and embedding delay shows that the estimate
approaches the true value only after N = 5000 and 2000,
respectively. Furthermore, both Rosenstein and Wolf sug-
gest that the minimum number of data samples required for
accurate estimation of largest Lyapunov exponent is 10m

(where m is the embedding dimension) [27]. Therefore, we
believe that the use of largest Lyapunov exponent may not
be a suitable approach in modeling human actions where
the number of data samples is small. Also, from Figure 3,
the shape distribution was found to be stable for different
time-series lengths. This striking ability of our feature to
be robust to changes in data length will be useful in appli-
cations related to human activity analysis, where the signal
observation time is small/variable.
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Figure 3: Shape distribution of reconstructed phase space for Lorenz (blue)
and Rossler (red) models for different time series length N (NL and NR

represents time series lengths of Lorenz and Rossler systems respectively).
Embedding parameters m and τ were chosen to be same as reported by
Rosenstein et al. [20]. It is reported in [20] that largest Lyapunov exponent
estimation on these models give significant error for the above shown data
lengths.

4. Experiments and Results
The proposed framework was tested on stroke rehabili-

tation dataset [8], motion capture dataset [3] and MSR Ac-
tion3D dataset [15].

4.1. Stroke Rehabilitation Dataset

Our aim in this experiment is two-fold: a) to classify
movements of unimpaired (neurologically normal) and im-
paired (stroke survivors) subjects, b) to quantitatively as-
sess the quality of movement performed by the impaired
subjects during repetitive task therapy. The experimental
data was collected using a heavy marker-based system (14
markers on the right hand, arm and torso) in a hospital set-
ting. Seven unimpaired and 15 impaired subjects perform
reach and grasp movements, both on-table and elevated
(the subject must move against gravity to reach the target).
The stroke survivors were also evaluated by the Wolf Mo-
tor Function Test (WMFT) [29] on the day of recording,
which evaluates a subject’s functional ability on a scale of
1 − 5 (with 5 being least impaired and 1 being most im-



Proposed Method KIM [8] Largest Lyapunov Exponent [20]
Subject Impaired Unimpaired Impaired Unimpaired Impaired Unimpaired

Impaired 55 5 53 7 43 17
Unimpaired 5 23 6 22 18 10

Table 1: Confusion table for stroke rehabilitation dataset using the proposed dynamical shape feature, KIM and largest Lyapunov exponent from a single
wrist marker giving 88.6%, 85.2% and 60.2% classification rate respectively.

Method Classification Rate
KIM [8] 85.2 %

Largest Lyapunov exponent [20] 60.2 %
Proposed method 88.6 %

Table 2: Comparison of classification rates for different methods using
leave-one-reach-out cross-validation and nearest neighbor classifier on the
stroke rehabilitation dataset.

Impaired
subject

Dynamical Features

- SVM
Regression

6

WMFT
Score

-

Movement
Quality
Score

(MQS)

Figure 4: Block diagram representation for learning a regressor for move-
ment quality assessment using Functional Activity Score (FAS) from the
Wolf Motor Function Test (WMFT).

paired) based on predefined functional tasks. Since our fo-
cus is on development of quantitative measures of move-
ment quality for a home-based rehabilitation system that
would use a single marker on the wrist (as shown in Fig-
ure 1), we only use the data corresponding to the single
marker on the wrist from the heavy marker-based hospital
system. Although WMFT scores are based on various func-
tional tasks (e.g., folding a towel, picking up a pencil) and
are not based on evaluation of reach and grasp movements,
we utilize these WMFT scores as an approximate high-level
quantitative measure for movement quality of impaired sub-
jects performing reach and grasp movements because both
WMFT evaluation and 3D marker data on the wrist were
obtained on the same day.

The focus of traditional methods for quantitative assess-
ment of movement quality has been towards kinematics.
Hence, in Table 2, we compare our results with an ap-
proach which uses kinematic analysis on the same dataset
[8]. We also compare our results with the performance of
largest Lyapunov exponents, a widely used measure in hu-
man movement analysis in Table 2. Table 1 shows the con-
fusion table for classification of movements using respec-
tive measures on stroke rehabilitation dataset. Our method
performs better than the two promising quantitative mea-
sures for movement analysis.
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Figure 5: Comparison between impairment level (with 5 being least im-
paired and 1 being most impaired) given by actual WMFT score and MQS
for 15 impaired subjects. The Pearson correlation coefficient was found to
be 0.8527 with a two-tail P-value of 5.35 × 10−5, proving its statistical
significance.

We also propose a framework for movement quality as-
sessment (shown in Figure 4) for stroke rehabilitation. Us-
ing the WMFT scores of impaired subjects, we learn a re-
gression function using SVM (using radial basis function
kernal) to compute a movement quality score from dynam-
ical shape features. The regressor is trained using leave-
one-reach-out cross-validation technique. The outputs of
the regressor were averaged per subject to get the Move-
ment Quality Score (MQS). Figure 5 shows a comparison
between actual WMFT score and the quality assessment
score by the proposed method (MQS). The Pearson correla-
tion coefficient between the MQS and the Function Activity
Score (FAS) of the WMFT was found to be 0.8527. When
we repeat the same experiment with kinematic attributes on
a single wrist marker, the correlation coefficient was found
to be 0.6481. In comparison, kinematic analysis from data
from all 14 markers gave a correlation coefficient of 0.9041.
This experiment clearly shows that the proposed framework
achieves comparable results obtained by the heavy marker-
based system even when using a single wrist marker, which
is facilitated by the phase space reconstruction and robust
feature extraction from phase space using shape distribu-
tions.

While this is a promising step towards development
of non-subjective framework for movement quality assess-
ment for stroke rehabilitation in a home-based setting, there
are limitations of our framework that require more investi-
gation prior to being used as a rehabilitation therapy tool
and are discussed in future work.



Action Dance Jump Run Sit Walk
Dance 31 0 0 0 0
Jump 0 13 1 0 0
Run 0 0 28 0 2
Sit 0 0 0 35 0

Walk 0 1 1 0 46

Table 3: Confusion table for motion capture dataset achieving mean clas-
sification rate of 96.84% when compared to 89.7% reported by Ali et al.
in [3].

4.2. Motion Capture Dataset
In the next experiment, we show that the proposed

framework can be applied to the well-studied problem of
action recognition. For this experiment, we use the dataset
released by FutureLight, R&D division of Santa Monica
Studios which is a collection of five actions: dance, jump,
run, sit and walk with 31, 14, 30, 35 and 48 instances re-
spectively. The classification problem on this dataset is
shown to be challenging due to the presence of significant
intra-class variations [3]. The data is in the form of tra-
jectories of 18 body joints. We use all body joints except
data from hip joint, to remove any effect of translational
movement of body. The 3D time series from these 17 joints
were divided into scalar time series (x, y & z) resulting
in a 51-dimensional vector representation for each action.
Phase space reconstruction and dynamical shape feature ex-
traction was performed. We use the leave-one-out cross-
validation approach using nearest neighbor for classifica-
tion. The results are tabulated in Table 3 and we achieve
a mean accuracy of 96.84% in comparison with 89.7% re-
ported by Ali et al. in [3]. Our results show that there was
some error made in classification of Jump, Run and Walk
actions, which is reasonable considering the similarity be-
tween these actions.

4.3. Kinect Dataset

The framework was also tested on a more comprehen-
sive dataset released by Microsoft Research called MSR Ac-
tion3D dataset [15] having 20 action classes (see Figure 6
for example actions) with 10 subjects performing each ac-
tion thrice. The dataset provides 3D joint positions (x, y &
z) and will be used as our input. These 20 action classes
were further divided into 3 Action Sets: AS1, AS2 and AS3
by Li et al. in [15] to account for the large amount of com-
putation involved in classification of these actions. The ac-
tion sets 1 and 2 were intended to group actions with similar
movement and action set 3 to group complex movements.
The classification results are tabulated in Table 4 and as
seen, the proposed framework performs better than the Bag
of 3D points approach proposed by Li et al. [15] for two
action sets on the cross-subject test setting using a linear
SVM. It should be noted that we have used ten subjects as

(a) Tennis serve

(b) Two hand wave
Figure 6: Example actions from action class Tennis serve (a) and Two hand
wave (b) from the MSR Action3D dataset. Skeleton data of 20 joints pro-
vided in the dataset will be used in our action recognition experiment.

Action Set Proposed method Bag of 3D points
AS1 77.5 % 72.9 %
AS2 63.1 % 71.9 %
AS3 87.0 % 79.2 %

Overall 75.9 % 74.7 %

Table 4: Classification results for cross-subject test setting where 50%
subjects were used for training and the remaining 50% subjects for testing
in proposed method. While a total of seven subjects were used by Li et al.
[15], our results presented are for 10 subjects.

opposed to seven subjects by Li et al. [15].

5. Conclusion and Discussion
In this paper, we proposed a new shape theory based dy-

namical analysis framework for movement quality assess-
ment and action recognition. To address the drawbacks of
traditional measures from chaos theory for modeling the dy-
namics of human actions, we proposed a framework com-
bining the concepts of nonlinear time series analysis and
shape theory to extract robust and discriminative features
from reconstructed phase space. The proposed framework
for movement quality assessment was used in assessing a
stroke survivor’s level of impairment. Furthermore, our
goal is to apply the proposed framework to home-based
stroke rehabilitation systems using a single marker. While
the information contained in a single marker on the wrist
is much impoverished compared to a heavy marker-based
system, our experiments indicate that with advanced dy-
namical features and machine learning tools, we are able to
achieve comparable performance levels to a heavy marker-
based system in movement quality assessment. These re-
sults also suggest that it is feasible to reduce the requirement
of multiple markers, leading to more portable and cheaper
rehabilitation systems for home-based deployment.



Experimental results also suggest that the proposed
method can be used for recognition of complex actions
(e.g., AS3 in Table 4). Furthermore, kinematic analysis for
complex movements (e.g., lift and transport an object) is
difficult, as it is impossible to define a “reference” trajec-
tory for such cases. Since the proposed framework does not
require a predefined reference trajectory, we believe that the
it will provide a computational framework suitable for qual-
ity assessment of complex movements and will be explored
in our future work. A current limitation is that the proposed
framework only specifies a Movement Quality Score (level
of impairment) and does not give any information about un-
derlying movement components contributing to the score
(e.g., elbow versus torso movement in a reaching task).
Hence, it cannot be used as a rehabilitation therapy tool yet
and we focus our future work in the same direction.

Our action recognition experiments on motion capture
and MSR Action3D datasets showed the strength and flex-
ibility of the proposed framework and can be convincingly
used for human action recognition from 3D data as well.

Future Work: In this paper we consider a rehabilitation
system in the context of repetitive task therapy (periodic
data) in which the stroke survivor repeats an activity for
a defined number of times. However, we would like our
future work to include non-periodic data from daily life ac-
tivities performed by stroke survivors. As mentioned ear-
lier, the WMFT and our framework are not rating the same
activities. To address this, we are in the process of data
collection from six stroke survivors performing simple and
complex tasks and have developed a rating scale in collabo-
ration with physical therapists that will be used to rate these
activities. Within this scale, physical therapists provide us
both an overall rating and a component rating. We are cur-
rently collecting both 3D marker position data and physical
therapist ratings in order to make comparisons among the
kinematics, our proposed measure, and the therapist ratings,
across the same action. Utilizing the expert knowledge of
the therapist ratings for these rated actions will also help us
better contextualize the data to better shape our framework
as a therapy tool.
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[10] A. Fugl-Meyer, L. Jääskö, I. Leyman, S. Olsson, S. Steglind,
et al. The post-stroke hemiplegic patient. 1. a method for evalua-
tion of physical performance. Scandinavian journal of rehabilitation
medicine, 7(1):13, 1975. 1

[11] D. M. Gavrila. The visual analysis of human movement: A survey.
Computer vision and image understanding, 73(1):82–98, 1999. 2

[12] I. N. Junejo, E. Dexter, I. Laptev, and P. Pérez. View-independent
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