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ABSTRACT 
This paper presents a novel system architecture and evaluation 

metrics for an Adaptive Mixed Reality Rehabilitation (AMRR) 

system for stroke patient. This system provides a purposeful, 

engaging, hybrid (visual, auditory and physical) scene that 

encourages patients to improve their performance of a reaching 

and grasping task and promotes learning of generalizable 

movement strategies. This system is adaptive in that it provides 

assistive adaptation tools to help the rehabilitation team customize 

the training strategy. Our key insight is to combine the patients, 

rehabilitation team, multimodal hybrid environments and 

adaptation tools together as an adaptive experiential mixed reality 

system.  

There are three major contributions in this paper: (a) developing a 

computational deficit index for evaluating the patient’s kinematic 

performance and a deficit-training-improvement (DTI) correlation 

for evaluating adaptive training strategy, (b) integrating assistive 

adaptation tools that help the rehabilitation team understand the 

relationship between the patient’s performance and training and 

customize the training strategy, and (c) combining the interactive 

multimedia environment and physical environment together to 

encourage patients to transfer movement knowledge from media 

space to physical space. Our system has been used by two stroke 

patients for one-month mediated therapy. They have significant 

improvement in their reaching and grasping performance 

(+48.84% and +39.29%) compared to other two stroke patients 

who experienced traditional therapy (-18.31% and -8.06%). 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Measurement techniques; J.3 

[Life and Medical Sciences]: Health; H.5.2 [Information 

Interfaces and Presentation]: User Interfaces – auditory (non-

speech) feedback, screen design, interaction styles  

General Terms 

Measurement, Design, Experimentation, Human Factors 

Keywords 

Mixed Reality Rehabilitation, Evaluation, Kinematic Deficit 

Index, Multimedia Feedback, Adaptation 

1. INTRODUCTION 
The goal of this paper is to propose a new system architecture and 

evaluation metrics for an adaptive mixed reality rehabilitation 

system for stroke patient. The problem is important – every 45 

seconds, someone in the United States suffers a stroke, often 

leading to physiological impairment. Up to 85% of patients have a 

sensorimotor deficit in the arm, such as muscle weakness, 

abnormal muscle tone, abnormal movement synergies, and lack of 

coordination during voluntary movement [4]. Effective adaptive 

training using mixed reality rehabilitation can potentially lead to 

fuller and faster recovery [7,8,9,12]. Therefore, we develop this 

adaptive mixed reality rehabilitation system to help stroke patients 

recover the ability to form movement strategies for efficiently 

completing the reaching and grasping task. 

There are three key problems that need to be addressed in an 

adaptive mixed reality rehabilitation system for stroke patient – 

1. Evaluating the patient’s movement performance 
computationally in real-time.  

2. Adapting the system to customize the therapy based on the 
patient’s ability and progress. 

3. Transferring the movement knowledge from the virtual (or 
media) space to the physical space. 

The computational evaluation for the patient’s performance is 

important because it allows therapists to know the patient’s status 

accurately in real-time without any additional test. This is very 

important for therapists to customize the training effectively. The 

computational evaluation also allows therapists to track the 

patient’s entire improvement history. It is also important for the 

rehabilitation system to be adaptable to the patient's individual 

ability and progress, allowing for patients to be challenged 

physically and cognitively without frustrating them [9,12]. 

Finally, the system should be able to transfer the movement 

knowledge learned from the virtual space to the physical space. 

This is crucial because the rehabilitation goal is to improve the 

patient’s daily life activities. These three problems are also 

limitations of our previous research on biofeedback system 

[1,2,18].  

In this paper, we present an adaptive multimodal mixed reality 

rehabilitation system to address these three problems. Firstly, we 

present a computational kinematic deficit index to measure 

patient’s movement performance and a deficit-training-

improvement (DTI) correlation to evaluate the adaptive training 

strategy. The kinematic deficit index is a common, unified and 

subject-independent deficit measure for evaluating subject 

performance during reaching and grasping task. It is a 

computational indicator for the rehabilitation team to make 

adaptation decisions. The deficit-training-improvement (DTI) 

correlation tells us about the effect of the therapy by showing the 

patient’s progress from pre-therapy to post-therapy, and the 

correlation between the improvement and training. Secondly, we 

present several adaptation assistive tools (e.g. central control, 

visualization, prediction and evaluation) that provide quantitative 

and informative analysis to help the rehabilitation team adapt the 

system and customize the training based on the patient’s progress. 
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Finally, we integrate the interactive feedback environment with 

physical space by four environments (virtual, hybrid I, hybrid II 

and physical) to promote learning of generalizable movement 

strategies and transferring knowledge from media space to 

physical space. Our results for two stroke patients who used our 

system for mediated therapy strongly support that mediated 

therapy can lead to faster and more integrated recovery in terms of 

both activity accomplishment and performance. Both participants 

demonstrate greater significant improvement (+48.84% and 

+39.29%) in their performance of the reaching and grasping task 

after mediated therapy, as compared to two other stroke patients 

who experienced traditional therapy (-18.31% and -8.06%). 
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Figure 1. Adaptive mixed reality rehabilitation system. Left: 

physical setup, Right: system diagram. 

The following sections of the paper are organized as follows. In 

section 2, we review the related work. In session 3, we present the 

architecture of our adaptive mixed reality rehabilitation (AMRR) 

system. In section 4, we discuss the multimedia feedback design. 

In section 5, we present the assistive adaptation tools that help the 

rehabilitation team adapt the system. We propose the evaluation 

for patient kinematic performance in section 6, and propose the 

evaluation for the adaptive training sequence in section 7. We 

describe the experimental results in section 8 and conclude the 

paper in section 9. 

2. RELATED WORK 
There has been extensive prior work on stroke rehabilitation using 

both mediated and non-mediated therapy. Improvements in 

kinematic or functional parameters of the upper extremity can be 

achieved through virtual reality therapy [8,12]. External feedback 

that augments the information gained from intrinsic sensory 

organs can offer guidance, motivation and encouragement. This 

can help stroke survivors to improve movements and gain 

confidence in the use of the affected limb [13,14]. Interactive 

environments can be used to encourage sensory-motor integration 

by providing feedback relevant to a specific function, and present 

this information in a meaningful and intuitive way [7,13,15]. The 

task and feedback should encourage active physical and cognitive 

participation by the patient to learn generalizable movement 

strategies [13]. The task and feedback must also be adaptable to 

the patient's individual ability and progress, allowing for patients 

to be challenged physically and cognitively without frustrating 

them [9,12]. These environments can provide accurate feedback 

on movement performance and record detailed kinematic 

parameters used for assessing functional recovery [5,12]. Patient 

interactions with such an environment have been shown to 

improve cognitive and physical function, increase self-esteem, 

and lead to feelings of greater self-efficacy and empowerment 

[9,15]. However, the existing systems do not provide real-time 

computational evaluation for kinematic movement or assistive 

adaptation tools based on data driven analysis. Thus, it is difficult 

for therapists to understand the patient’s status accurately and 

customize the system based on patients’ progress effectively. 

There is also extensive prior work on qualitative and quantitative 

clinical measures for assessing a stroke patient’s movement. The 

Motor Activity Log (MAL) [11] was developed to measure the 

improvement in the activities of daily living. The Wolf Motor 

Function Test (WMFT) [17] is a s series of functional tasks (arm 

movements, picking objects up, etc) that are timed and rated for 

quality by a trained therapist. Other measures such as the Arm 

Motor Activity Test [10], or the Fugl-Meyer Assessment Scale [6] 

are also used to evaluate a patient’s movement pre and post 

therapy. However, these tests are based on questionnaires or 

movement assessment by a therapist. Thus they are sensitive to 

the subject's mood and individual interpretations by the different 

therapists conducting the evaluation. 

Computational kinematic analysis using motion capture data 

provides reliable, repeatable, objective and quantitative measures 

of movement. It detects subtler changes in movements and 

provides specific quantities such as degree of elbow extension or 

hand velocity [5,16]. Recent rehabilitation studies have used 

kinematic measures resulting from motion capture to evaluate 

recovery in detail [12,16]. However these studies do not use a 

common, standard process to calculate the kinematics and thus 

they are hard to compare. Furthermore, they do not integrate the 

different attributes into a single deficit measure. Thus, we are not 

able to tell with confidence the overall performance improvement. 

Therefore, we are proposing a computational kinematic deficit 

index that integrates all key kinematic attributes into a single 

subject-independent deficit measure. This deficit index allows us 

to evaluate the patient’s performance and to compare across 

patients in a standardized quantitative space.  

3. SYSTEM ARCHITECTURE 
We now present the system architecture of our Adaptive Mixed 

Reality Rehabilitation (AMRR) system. The primary goal of this 

system is the development of a real-time multimedia system that 

uses multimodal sensing to map structural representations of 

movement to interactive feedback. The environment provides a 

purposeful, engaging, visual and auditory scene in which patients 

can practice functional therapeutic reaching and grasping tasks, 

while receiving different types of simultaneous feedback 

indicating measures of both performance and results. Our system 

is an adaptive system that allows the rehabilitation team, 

consisting of a therapist and a media arts and sciences expert, to 

customize the training strategy by changing the system 

parameters. The system parameters include visual, audio, physical 

space and reaching task-specific parameters. Adaptation based on 

each patient’s individual ability and performance is crucial for an 

effective rehabilitation. Our system provides an interface for 

changing the system parameters and several computational tools 

(such as visualization, prediction and kinematic assessment) to 

help the rehabilitation team make adaptation decision. 

In this section, we first introduce the physical setup and functional 

tasks. Then we discuss the system structure and four training 

environments. Finally, we introduce the rehabilitation procedure. 

3.1 Physical Setup and Functional Tasks 
The patient is seated at a height- and position-adjustable table in 

front of a large screen display that provides visual feedback and 

two speakers that provide audio feedback. The table is placed to 

either fully support the affected arm or to leave the elbow of the 



affected arm unsupported. We use eight near-infrared cameras 

running at 100 frames per second to track the three-dimensional 

positions of reflective markers that are placed on the subject’s 

back and affected arm. Figure 1-(left) shows the physical setup. 

During training, patients perform a reaching task, either by 

reaching to a target, reaching to touch a target or reaching to grasp 

a target. The reaching task was selected because it is a widely 

used task for stroke patient rehabilitation. Reaching is a much 

needed functional task in everyday life, and the movement 

attributes of the task (i.e. bell like velocity profile) can easily 

generalize to performance of other functional tasks. Reaching 

movements start from a consistent rest position. The target can be 

physical (an object is placed in the space for the patient to touch 

or grasp with no feedback) or virtual (no physical object is 

present, with feedback) or hybrid (combined physical and virtual).  

Patients are trained to reach towards four target locations that are 

placed according to each subject's body measurements and ability. 

The four target positions are determined by doctors and therapists. 

Two targets are on the table so the subject can use the table for 

support and two targets are placed 6 inches off the table so the 

subject must work against gravity to reach the targets. For both 

on-table and off-table, one target is positioned ipsilaterally and the 

other is placed in the midline. This results in four target locations:  

1. Supported, Ipsilateral (SI) target: on the table and on the right. 

2. Supported, Middle (SM) target: on the table and in the middle. 

3. Against Gravity, Ipsilateral (AGI) target: off the table and on 

the right. 

4. Against Gravity, Middle (AGM) target: off the table and in the 
middle. 

3.2 System Structure 
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Figure 2. Adaptive mixed reality rehabilitation system structure.  

We now discuss the structure of our adaptive mixed reality 

rehabilitation (AMRR) system. Figure 2 shows the system 

structure that integrates two major parts: (a) physical and 

feedback environments, and (b) adaptation tools. The physical and 

feedback environments are integrated into one multimodal 

interactive composition that (a) engages patients, (b) encourages 

patients to improve their performance of the training task, and (c) 

promotes learning of generalizable movement strategies. The 

adaptation tools help the rehabilitation team adapt the system to 

customize the training strategy. The rehabilitation team includes a 

therapist and a media, arts and sciences expert.  

The physical environment includes a chair, a table and two 

physical targets (i.e. a push button and a 5-inch tall cone). The 

heights of the table and the chair are adjustable. The push button 

and the cone are used for training the push action and grasping 

action respectively. Force-sensing resistors are embedded in both 

the push button and the cone. The positions of these physical 

objects are measured physically and recorded in the data archival, 

in order to recover the same physical setup for a patient across 

visits. 

In the feedback environment, the patient’s arm movements are 

captured using multimodal sensing, analyzed, and then mapped as 

quantitative components of the action to the audio and visual 

feedback. Feedback communicates to the patient amount of error 

and direction for improvement and helps the patient learn a 

generative plan for reaching and grasping movement. We use 

OptiTrack motion capture system (including eight near-infrared 

cameras) to tracks the 3D positions of reflective markers that are 

placed on the subject at 100 frames per second. The tangible 

sensor tracks the touching and grasping movement of the patient’s 

hand. The real-time motion analysis smoothes the raw sensing 

data, and derives an expanded set of task specific quantitative 

features. These features are normalized through the sensitivity 

filter. The motion analysis computation takes less than 5ms for 

each frame and results in zero latency (<10ms). It multicasts the 

analyzed data to the audio, visual and archival subsystems at the 

same frame rate. The analyzed data for each frame includes 

hundreds of parameters and takes 1408 bytes (binary format) 

which results in data transmission rate at 1.07M bps. Since this is 

the only data transmission in real-time and our system is built on a 

local wire network, we have not observed any delay and packet 

loss in our experiments. The audio and visual subsystems adapt 

their auditory and visual response dynamically to the normalized 

motion features under different feedback environments. The 

normalized and bounded movement error representation allows 

for feedback sensitivity to be adjusted by changing the control 

parameters in the sensitivity filter. The sensitivity filter, audio 

feedback and visual feedback can be adapted through the interface 

in the central control. The data archival subsystem continuously 

stores all types of the data streams (e.g. motion analysis data, 

sensitivity filter data, feedback data, etc.).  

The adaptation tools allow the rehabilitation team to customize 

the training strategy by changing the system parameters. The 

rehabilitation team can change the system state by using the 

central control interface to operate the whole system such as 

calibration, start/stop of the training, changing the system 

parameters, and showing the selected motion features graphically 

in real-time. The visualization, prediction analysis and kinematic 

evaluation tools provide quantitatively helpful information for the 

rehabilitation team to make the decisions about how to adapt the 

rehabilitation process to meet the patient’s needs and progress and 

enhance the rehabilitation outcomes. The visualization tool 

visualizes the analysis results of subject’s performance. The 

prediction tool predicts the patient performance for the system 

adaptation query based on the mixture-of-experts based Dynamic 

Decision Network model [2]. The kinematic evaluation tool 

evaluates the patient’s kinematic performance and the relationship 

between the training sequence and the patient’s improvement. 



3.3 Four Training Environments 
In our adaptive mixed reality rehabilitation system, we organize 

the feedback into four different training environments:  

1. Virtual – no physical target present, with interactive audio and 
visual feedback, 

2. Hybrid II – a physical target present, with interactive audio 
and visual feedback. 

3. Hybrid I – a physical target present, with interactive audio 
feedback only. 

4. Physical – a physical target present, with no audio or visual 

feedback. 

In the virtual environment, the patient learns the mappings 

between the feedback and his or her arm movements through 

exploring the action space and through experiencing the media 

environment. In the hybrid II environment, we help the patient 

transfer knowledge learned from the media interaction to physical 

space by integrating the multimedia feedback and physical target 

together in one environment. In hybrid I, we reduce feedback by 

only providing audio feedback to encourage transference and 

retention of knowledge gained from the media interaction. In the 

physical environment, we check if the patient successfully 

transfers knowledge from media space to physical space. 

3.4 Rehabilitation Procedures 
We now introduce the rehabilitation procedure by using our 

mixed reality rehabilitation system. Let us denote every subject 

visit as a session. For each session, there are several sets. Within 

each set, the environmental conditions (e.g. physical state, audio 

and visual parameters) remain fixed. Each set includes ten 

reaching trials. The rehabilitation team adapts the system during 

the short break (typically two minutes) between two consecutive 

sets. The team discusses the subject’s movement performance, 

informed by the visualization, prediction analysis and kinematic 

evaluation tools, which illustrate the subject’s performance for the 

previous sets. Then the rehabilitation team decides how to fine-

tune the system (e.g. change musical instrument) to help the 

patient achieve a generative reaching and grasping plan. Again, 

the real-time aspect of the adaptation is crucial to this 

rehabilitation system, because immediate responses to patient 

performance greatly enhance the patient’s ability to create and 

maintain a generative plan for movement [9,12]. 

4. MULTIMEDIA FEEDBACK DESIGN 
We now present the design of the multimedia feedback within our 

AMRR system. Our system situates participants in a multi-

sensory engaging environment, where structural components of 

physical actions by the right arm are coupled to audio and video 

feedback. Each key movement parameter of the affected arm’s 

action is mapped to a feedback stream that is well suited to the 

intuitive display of the particular component of movement. 

Feedback streams are constructed based on multimodal arts 

composition principles, so as to intuitively communicate to the 

patient magnitude of error and direction for improvement. All 

feedback streams are integrated into one multimodal interactive 

composition that (a) engages patients, (b) encourages them to 

improve performance of the training task, and (c) promotes 

learning of generalizable movement strategies. An important 

measure of success of the feedback design is its ability to 

encourage participants to transfer the learned knowledge to 

interactions outside of the system in the physical world. 

The feedback mapping has been presented in our previous work 

[1]. However, the previous system is not adaptable and has not 

been used for adaptive therapy for stroke patients. In this paper, 

we introduce a new component, feedback sensitivity filter, which 

normalizes the movement features. The normalized and bounded 

movement errors are dynamically mapped to the auditory and 

visual media. The normalized and bounded movement error 

representation allows for adjustment of feedback sensitivity by 

changing control parameters in feedback sensitivity filters. In this 

section, we first introduce specific features characterizing 

reaching and grasping movement. Secondly we discuss the 

feedback sensitivity filter. Finally, we review the design of the 

interactive feedback, the aspects of movement to which they are 

mapped, and the feedback adaptation. 

4.1 Representing Reach and Grasp Action 
We now discuss the key aspects of the reaching and grasping 

movement. We select four groups of features: (a) hand targeting 

and trajectory, (b) hand speed, (c) joint opening, and (d) 

compensation. Hand targeting, trajectory, and speed contribute 

strongly to the task completion, while joint opening and 

compensation focus on usage of key body structures to achieve 

task completion. The features of each group are listed in Table 1. 

We select these movement features because they can reflect non-

impaired reaching movements, in which reaching for a target is 

efficiently accomplished with accuracy, natural speed, and joint 

extension without body compensation. These movement features 

can be derived from the 3D positions of reflective markers that are 

placed on the patient’s affected arm and back of the torso [3]. We 

calculate these features every 10 milliseconds (i.e. at frame rate of 

100fps). The data packet for each frame has 1408 bytes which 

results in data transmission rate at 1.07M bps. 

The hand targeting and hand trajectory are represented by the 

hand marker position along the three directions in the local 

coordinate system X'Y'Z'. Let us denote the direction to the 

subject’s left as X, the direction up to the ceiling as Y and the 

direction from the subject to the table as Z. Thus, we have a 

global 3D coordinate system. Based on the reaching task, we also 

have a local coordinate system X'Y'Z'. The Y' is the same as Y. 

We rotate the X and Z to X' and Z' such that the Z' direction is 

from the start position toward the target. Figure 3 (left) describes 

the global and local coordinate systems. 

Table 1. Reaching and Grasping movement features 

Group Features 

Hand targeting 

and trajectory 

Hand maker position along three directions 

(X'Y'Z') in the local coordinate system. 

Hand speed Speed of the hand marker. 

Joint opening Shoulder flexion, Elbow extension and 

Forearm rotation 

Compensation Torso compensation (forward and twist 

Shoulder compensation (upward and forward) 

Elbow compensation (lift) 

4.2 Feedback Sensitivity Filter 
We now introduce the sensitivity filter. The basic idea is to filter 

the raw movement feature (finite or infinite) to a normalized and 

bounded movement error that is used by audio and visual 

feedback.  This allows for (a) application of feedback design to 

any range of the movement features, and (b) adjustment of the 

feedback sensitivity by changing the filter parameters. In this 

section, we use the horizontal hand trajectory as an example to 

illustrate how to calculate the normalized feature error. In the 



similar manner, we can also compute the normalized error for 

joint opening and compensation. 
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Figure 3. Hand trajectory along the table plane. Left: Global 

coordinate system XYZ and local coordinate system X'Y'Z'. 

Right: the reference trajectory, dead zone and the hull. 

We denote the horizontal hand trajectory as x'(t) (ref. Figure 3 

right) that is along the X' direction in the local coordinate system. 

At every time stamp t, we compute the normalized horizontal 

trajectory error that is ranged from -1 to 1. Negative one and 

positive one means the hand is on the left and right respectively, 

very far away the reference trajectory (ref. Figure 3 right). The 

reference trajectory is extracted from averaging the reaching 

trajectory of non-

impaired subjects. 

The normalized 

horizontal 

trajectory error is 

controlled by the 

two kinds of filter 

parameters: the 

dead zone and the 

hull (ref. Figure 3 

right). The dead 

zone covers the 

non-impaired subject variation (3cm). The normalized error value 

is zero if the hand position is within the dead zone. The 

normalized error increases or decreases exponentially as the hand 

moves further from the dead zone toward the right or left 

respectively. The rate of the change is controlled by the size of the 

hull. The bigger the hull is, the slower is the rate of the error 

change. Thus loosening the hull provides a mechanism for 

lowering the feedback sensitivity. If the normalized error is less 

than -1 or bigger than 1, we cut it off to -1 or 1. Figure 4 shows 

how to normalize the error based on the dead zone and hull.  

In the similar manner, we can also compute the normalized error 

for joint opening and compensation. For each feature of joint 

opening and compensation, we have a reference, a dead zone and 

a hull along the Z' direction. 

4.3 Coupling Action Representation to 

Interactive Feedback 
We now present how to couple our representation of a reach and 

grasp action to feedback generation. First, we discuss intuitions 

and principles guiding feedback design. Then, we follow with the 

audiovisual mappings and feedback adaptation.  

4.3.1 Design of Interactive Feedback 
Audiovisual feedback is mapped to key aspects of the user’s 

action, with the purpose of directing his or her attention to how 

each aspect contributes to activity completion. The audiovisual 

media space is designed to recontextualize the reaching task, in 

that the mappings do not depict an arm reaching to grasp a target, 

but rather reflect an abstract audiovisual composition. The 

feedback environment therefore maps to any type of task or target 

location, and as a result, promotes learning that is generalizable 

beyond the rehabilitation training scenarios.  

The interactive feedback must communicate a complex network 

of dynamic parameters in real time training. Thus intuitive 

communication to the user through the audiovisual media is 

crucial to meaningful understanding of his or her interaction with 

the system. Intuitive design of the feedback is based upon 

principles used within multimodal art forms, including music 

performance, dance, animation and film. The visual feedback 

communicates spatial aspects of the action relative to the target, 

while the auditory feedback communicates timing and event 

knowledge of specific aspects of action. The nature of the 

feedback highly correlates to the mapped action and thus is able to 

convey both magnitude of error and direction for improvement. 

Real time interactivity connects the user’s action to immediate 

responses from the feedback environment that facilitates the 

action-feedback parallel. The user’s active engagement within the 

integrated physical-digital space allows for training in the physical 

environment, while the media both (1) actively engages the user 

and (2) recontextualizes the reach and grasp to defuse frustrations 

associated with the difficulty of performing the task in daily life.  

4.3.2 Feedback Mappings 
In this section, we describe the specific audiovisual mappings 

used within our system. Goal accomplishment of the physical 

reach and grasp action is paralleled within the resolution of an 

audiovisual narrative, in which (1) an image that separates into 

particles is reformed, and (2) a musical progression initiated by 

reaching is resolved. The quality of the user’s performance in 

physical space is manifested in the performance of the interactive 

media composition. A personalized image is presented on the 

screen before the user (Figure 5 a), and separates into hundreds of 

particles that expand to fill the screen (Figure 5 b). As the user’s 

hand moves towards the target, he pushes the particles back to 

reassemble the image, while also driving the musical progression.  

 

Figure 5. Visual feedback reflects spatial aspects of user’s action  

Reaching speed and duration, targeting, and trajectory accuracy 

are mapped to core aspects of the audiovisual narrative. As the 

most detailed, continuous feedback mappings, they draw attention 

to those aspects of movement that have the strongest integrated 

impact on completion of the action goal. When the user’s hand 

deviates too far from an efficient trajectory path, the image 

Figure 4. Sensitivity filter diagram  

 



particles sway in the direction of deviation (Figure 5 c, d). Thus 

the intuitive message is to move in the direction opposite of the 

particle sway to reassemble the image. Trajectory deviation is also 

reflected in the detuning of the harmonic progression within the 

audio feedback. Targeting is described by the coalescence of 

particles fitting into a white frame that appears near the end of the 

reach, as the user adjusts his hand position relative to the target. 

To communicate reach duration, each note of the harmonic 

progression is mapped along the normalized distance between the 

hand’s start position and target. Reaching speed of the hand 

controls the rhythmic progression of the musical composition. 

Joint function and compensatory movements are mapped to less 

detailed feedback that impart event knowledge amidst the more 

continuous feedback streams described above.  Forearm rotation, 

if excessive or incorrectly timed, rotates the image in the direction 

of error (Figure 5 e). Magnitude of elbow extension is mapped to 

volume of orchestra strings that peak during full extension. 

Scraping or crackling sounds indicate compensatory body 

movements of the shoulder or torso, respectively. Finally, the 

communication of more complex, integrated descriptors of action 

performance emerges from the user’s experience of multiple 

feedback mappings.  

4.3.3 Feedback Adaptation 
The feedback is adaptable in terms of feedback type, usage, and 

sensitivity. The rehabilitation team may select different training 

environments (see Section 3.3), enable or disable specific 

feedback mappings, adjust the media parameters in the audio and 

visual feedback (e.g. image set, musical instrument, sound 

volume), as well as change the sensitivity filter parameters to 

increase or decrease the feedback sensitivity (e.g. the width of 

dead zone, the width of hull). In the following section, we shall 

describe how we customize the feedback for each individual user 

by using assistive adaptation tools. 

5. ASSISTIVE ADAPTATION TOOLS 
In this section, we review the assistive adaptation tools that help 

the rehabilitation team to adapt the system. The prediction 

analysis, data archival, and visualization have been presented in 

[2,18]. However, we have not integrated these tools together for 

adaptive therapy for stroke patients. This is the first time that we 

integrate all these tools in our adaptive mixed reality rehabilitation 

system, which enables the rehabilitation team to adapt the 

mediated training based on the patient’s progress. In addition, we 

develop two new tools – (a) central task control and (b) 

performance evaluation. The central task control provides a GUI 

for system adaptation and the performance evaluation provides the 

quantitative kinematic movement assessments for the patient. 

5.1 Adaptive Training Sequence 
We now discuss the adaptive training sequence. Training across 

all tasks and targets (ref. section 3.1) consists of approximately 14 

sessions. Each session (ref. section 3.4) lasts for about 1.5 hours 

and includes about 120 reaches (12 sets of 10 reaches). Each 

session starts from the repetition of the last mixed reality set in the 

previous session. Depending upon patient needs, training starts 

with the easiest target location (supported ipsilateral ref. section 

3.1) and gradually adjusts to the most difficult target location 

(against gravity at the midline). 

The system supports an approach to highly customizable training. 

In the context of accomplishing the activity goal, the therapy may 

focus on any aspect of the reaching and grasping action, at the 

activity or body function level, or an integration of both.  Within a 

single session, or across multiple sessions, the therapist may adapt 

the sequence and/or the weights of any aspect of the reach and 

grasp action. By enabling or disabling components of the 

feedback, or by increasing or decreasing feedback sensitivity, the 

therapist controls on which aspect of the feedback, and thus which 

aspect of the action, the patient should focus. 

The training for each target includes a sequence of training sets 

(ref. section 3.4). Each set focuses on improvement of a set of 

movement parameters, while maintaining or further advancing 

gains in other parameters from previous sets. The rehabilitation 

team selects the focusing parameters for each training set and 

makes the adaptation decision between two consecutive sets based 

on task intensity and the movement assessment data. The task 

intensity refers to the number of sets remaining for training the 

current movement parameters. The adaptation decision-making 

includes four parts – (a) determine the focusing movement 

parameters, (b) select the appropriate training environment 

(virtual, hybrid I, hybrid II or physical), (c) select the feedback 

that relates to the selected movement parameters (e.g. enable 

image rotation for training the forearm rotation), and (d) adjust 

control parameters in the feedback sensitivity filters (e.g. width of 

the trajectory hull). 

5.2 Central Task Control 
The central task control provides a GUI to operate the whole 

system such as calibration, start/stop of the training set, changing 

system parameters. The rehabilitation team can use the central 

task control to change all feedback parameters that includes: (a) 

switch on/off of the specific feedback (e.g. torso compensation 

sound), (b) audio and visual feedback parameters (e.g. musical 

instrument and image set), and (c) the feedback sensitivity filter 

parameters (e.g. the trajectory hull or compensation hull). Figure 6 

demonstrates the GUI of the central control. The central control 

also visualizes the motion features graphically in real-time, which 

allows the rehabilitation team to monitor the patient’s movement 

during the patient’s reaching. 

 

Figure 6. Central task control GUI. 

5.3 Data Archival 
The data archival subsystem continuously stores all kinds of the 

data streams for the purpose of annotation and off-line analysis. 

The data streams includes: (a) reaching and grasping movement 

features, (b) sensitivity filter control parameters, (c) audio and 

visual feedback parameters, (d) physical space measures, and (e) 

the verbal instructions and annotations of the rehabilitation team. 



In addition, all rehabilitation sessions are videotaped. The 

recorded videos are important to help the rehabilitation team 

compare the patient performance perceptually and are also 

important for the offline analysis. 

5.4 Visualization 

 
Figure 7. Screenshot of the visualization tool. 

Visualization tool [18] summarizes the patient’s kinematic 

performance in different temporal scales (session, set or trial). The 

fundamental challenge in visualization is that the rehabilitation 

team wants both the summary and the details at the same time. 

We organize the conceptual facets (i.e. kinematic features) 

vertically and the temporal faces hierarchically and horizontally. 

This organization reveals data trends within a conceptual facet 

and enables efficient data comparison across temporal facets. The 

visualization tool is very helpful for the rehabilitation team to 

track the patient’s performance visually and adapt the training 

strategy efficiently. 

5.5 Prediction and Suggestion 
The prediction and suggestion tool addresses two basic questions 

based on data driven analysis: 

Q1. Performance prediction: given a specific adaptation 

suggested Δf by the rehabilitation team (e.g. narrow the 

trajectory hull), the algorithm predicts the patient movement 

performance ΔO (e.g. trajectory error decreases by 1cm). 

Q2. Adaptation suggestion: given an expected patient movement 

performance ΔO (e.g. increase the speed by 10%), the 

suggestion algorithm provides the optimal recommendation 

for the change of the environment Δf (e.g. increase the 

tempo). 

We use a mixture-of-experts based Dynamic Decision Network 

(DDN) [2] for prediction and suggestion. We train DDN mixtures 

per patient, per session. The questions are answered through an 

optimality criterion based search on DDN 

models trained in previous sessions.  

5.6 Performance Evaluation 
The evaluation tool provides the quantitative 

kinematic assessments of the patient’s 

movement to the rehabilitation team in real-

time. This will help the rehabilitation team 

understand the patient’s progress 

quantitatively. In addition, the evaluation 

tool can measure the correlation between the 

patient’s improvement and adaptive training 

sequence. This allows the rehabilitation team 

to efficiently customize the training strategy 

for the therapy. Figure 8 shows a 

performance evaluation interface in our 

system. The details of algorithms to compute the kinematic deficit 

index and deficit-training-improvement correlation will be 

discussed in the next two sections. 

6. KINEMATIC DEFICIT INDEX 
In this section, we propose a common reference kinematic deficit 

index to measure patient performance during the reaching and 

grasping task. With this measure, we have a standard normalized 

space for all subjects. The deficit measure is important because: 

(a) It is subject-independent and allows us to compare the 

progress across patients, (b) the measure is bounded, so it is 

indicative of the room for improvement, and (c) it allows us to 

understand the rehabilitation progress quantitatively, and hence it 

is a computational indicator for the system adaptation. 

A kinematic deficit index is computed for a set (ref. Section 3.4) 

of reaches (10 reaches) with respect to a reaching and grasping 

task. The basic idea is to use a normalized scalar between zero 

(implies no deficit) and one to evaluate the subject’s kinematic 

movement. Zero deficit indicates that patient’s movement is very 

close to non-impaired subject with respect to the reaching and 

grasping task. One means the patient’s movement is very far away 

from non-impaired subject movement. Mathematically, the deficit 

measure can be formulated as a function of a set of reaches: 

 
1 2
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N

D f R R R , <1> 

where D is the deficit and Ri is the vector representation of the ith 

reach. In our mixed reality rehabilitation, we evaluate the deficit 

for every set (ref. Section 3.4). Therefore N equals ten, since there 

are ten reaches within a set. 

We develop the deficit measure in three steps. We first represent 

the subject’s kinematic performance using 33 kinematic attributes. 

Then we map each kinematic attribute to a normalized attribute 

deficit number that is between zero and one. Finally we combine 

all attribute deficit numbers together to a single deficit number. 

6.1 Kinematic Representation 
We represent the kinematic movement during the reaching and 

grasping task by 33 attributes that are grouped into six groups. 

Each group has several related attributes. These six groups are 

shown in Table 2. The intuitions of these six groups come from 

the domain knowledge of therapists and bioengineering domain 

experts. The speed, time, targeting and trajectory are related to the 

simple reaching and grasping activity. The velocity bellness, jerk-

cost and joint synergy are related to the reaching and grasping 

with good arm control. The velocity bellness refers to the bell 

shape of the velocity profile. The compensation and joint function 

are related to the body function.  

Seven of these 33 attributes are in the set 

level (ref. Section 3.4). They are velocity 

peak consistency, time consistency, 

horizontal trajectory consistency, vertical 

trajectory consistency, shoulder flexion 

profile consistency, elbow extension profile 

consistency and forearm rotation 

consistency over ten reaching trials. The 

other 26 attributes are in the trial level. 

Each attribute is calculated per trial. For the 

sake of space limitation, we do not discuss 

the computation of these 33 attributes in 

this paper. The details of computation can 

be found in [3]. 
Figure 8. Screenshot of the performance 

evaluation interface 

 

 



Table 2. 33 attributes for six groups. 

Group Attributes 

Speed and Time Speed (2 attributes), Time (1 attribute) 

Targeting and 

trajectory 

Targeting (3 attributes),  

Trajectory (4 attributes) 

Velocity bellness and 

jerk-cost 

Velocity bellness (3 attributes),  

Jerk-cost (1 attribute) 

Joint synergy pair-wise joint correlations (5 attributes) 

Compensation Torso compensation (2 attributes) 

Shoulder compensation (2 attributes) 

Elbow compensation (1 attribute) 

Joint function Shoulder flexion (3 attributes) 

Elbow extension (3 attributes) 

Forearm rotation (3 attributes) 

6.2 Attribute Deficit 

We now show how to compute the deficit for each attribute for a 

set of reaches. We treat the trial level attributes and set level 

attributes differently. For the trial level attribute (e.g. velocity 

peak), we first compute the deficit for every trial using the trial-

level feature (e.g. velocity peak value of a trial), and then compute 

the average of ten trials as the deficit for a set. For the set level 

attribute (e.g. velocity peak consistency), we directly compute it 

using the set-level feature (e.g. velocity peak variance over a set).  

 

Figure 9. Three attribute deficit types. Top-left: left sided deficit. 

Top-right: right sided deficit. Bottom: double sided deficit. 

The basic idea is to map each kinematic attribute range (infinite or 

finite) to a normalized range from 0 to 1. Zero deficit means that 

the subject performance is very close to non-impaired subjects in 

that attribute and one means the worst possible performance. Our 

intuition is that non-impaired subjects’ performance for every 

kinematic attribute, results in a small value range for that attribute. 

In other words, unimpaired subjects performance for a specific 

task will show a small range of values, for each kinematic 

attribute. The more severe the stroke induced motor deficit, the 

further the patient performance will be from the non-impaired 

range. Therefore, we define a dead zone for each attribute that 

covers the non-impaired subjects’ variation. The deficit value for 

an attribute is zero if the attribute value is within the dead zone. 

The deficit value increases exponentially as the attribute value 

moves further from the dead zone. The rate at which the deficit 

function increases is controlled by the sensitivity parameter. The 

values of dead zones and sensitivities [3] are determined from 

both kinematic literature and therapist domain knowledge. We 

classify the 33 attributes into three classes based on the shape of 

dead zone (shown in Figure 9): 

1. Right sided deficit – The deficit range (x>th+) is on the right 
of the dead zone. 

2. Left sided deficit – The deficit range (x<th-) is on the left of 
the dead zone. 

3. Double sided deficit – The deficit range is on the both sides. 

The deficit classes for all 33 attributes can be found in [3]. 

The right side deficit d for a trial level attribute (e.g. ending point 

accuracy in the targeting/trajectory group) is computed as follows: 
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where N is the number of trials in the set, xi is the raw feature for 

the ith trial, th+ is the threshold and α+ is the sensitivity parameter. 

The thresholds and sensitivity parameter for all 33 attributes can 

be found in [3]. They are determined from both kinematic 

literature and therapist domain knowledge. h(·) is a cut-off 

function. If the feature x is smaller than the threshold th+, which 

means that the performance is within the dead zone, the deficit 

value is zero. If the feature x is larger than the threshold th+ (right 

side), the deficit number increases exponentially to one. Slightly 

different with the trial level attribute, the set level attribute deficit 

(e.g. reaching time consistency in the speed and time group) is 

computed directly on the set level raw feature as follows: 
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where x is the raw feature (e.g. reaching time consistency) in the 

set level. In the similar manner to the right sided deficit, we can 

compute the left sided deficit for trial level attributes (e.g. joint 

synergy between shoulder flexion and elbow extension in the joint 

synergy group) and the double sided deficit. The mathematical 

details can be found in [3].  

6.3 Computational Kinematic Deficit Index 
Using the eq<2> and eq<3>, we can compute deficits for all 33 

attributes. Therefore, we can construct a deficit vector using these 

33 attribute deficit values: 

  , , ..., , 33
T

1 2 K
= d d d K d , <4> 

where dk is the deficit of the kth attribute for a set. Each element di 

is a scalar between zero and one. The overall deficit D for a set of 

reaching trials is computed as weighted summation over 33 

attribute deficit values as follows: 
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where dk and wa
k
 are the attribute deficit and the attribute weight 

for the kth attribute. In our mixed reality rehabilitation for stroke 

patient with respect to the reaching and grasping task, we use the 

same attribute weights [3] for all patients. These attribute weights 

are subject independent and are determined by doctors and 

therapists based on their domain knowledge. 

7. DEFICIT-TRAINING-IMPROVEMENT 

(DTI) CORRELATION 
We now propose a computational algorithm for computing the 

deficit-training-improvement (DTI) correlation to evaluate the 

adaptive training (ref. Section 5.1) performed through our mixed 

reality rehabilitation system. This framework is based on 

calculating the correlations between the patient’s initial movement 



deficit (D), the training implemented through our system (T), and 

the improvement in the patient’s movement at the end of the 

therapy (I). The deficit-training-improvement correlation tells us 

about the effect of the therapy by showing the patient’s progress 

from pre-therapy to post-therapy (DI), and the correlation between 

the improvement and training (TI). With this framework, we can 

evaluate and compare the different training procedures 

implemented through our mixed reality rehabilitation system.  

7.1 Deficit-Improvement Correlation 
The deficit-improvement correlation is the correlation between the 

deficit at the beginning and the improvement at the end. Therefore 

we need to compare the patient performance before the 

rehabilitation and after the rehabilitation fairly. In our mixed 

reality rehabilitation, the first session is the pre-test and the last 

session is the post-test. In both the pre-test and the post-test, the 

subject does four sets of reaches for four different targets. Each 

set has ten trials. The four targets in the pre-test and in the post-

test are exactly same. These four targets are SI, SM, AGI and 

AGM (ref. Section 3.1). For each target, we can compute the 

deficit vector (ref. eq.<4>) and overall deficit value (ref. eq.<5>).  

Let us denote the deficit for the kth attribute for the mth target for 

pre-test and for post-test as dm,k
pre and dm,k

post respectively. We 

defined the improvement from the pre-test to the post-test as the 

weighted average of deficit difference over all 33 attributes over 

all four targets. The overall improvement is computed as follows: 
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where wa
m,k is the attribute weight for the kth attribute for the mth 

target, M is the number of targets and K is the number of attributes 

(M=4, K=33). Attribute weights are determined by doctors and 

therapists based on their domain knowledge. They are fixed for all 

subjects and can be found in [3].  

We define the deficit-improvement correlation as the ratio 

between the improvement and deficit in the pre-test. The deficit-

improvement correlation DI is computed as follows: 
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where the IMP is the improvement (ref. eq.<6>) and the Dpre is the 

overall deficit value for the pre-test for reaching for four targets. 

The DI correlation tells us how much (in percentage) of the deficit 

in the pre-test is improved in the post-test.  

7.2 Deficit-Training Correlation 
We now propose the deficit-training correlation. The basic idea is 

to check if the attributes with high deficit value are more focused 

in the training. We address this problem by two steps: (a) 

representing the training as a training vector over 33 kinematic 

attributes, and (b) computing the cross correlation of training 

vector and deficit vector as the DT correlation. 

7.2.1 Training Vector 
We compute the training vector T using the task focus vectors Fi,j 

of all training sets as follows: 
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where L is the number of the training sessions, J(i) is the number 

of sets in the ith session, Fi,j is the task focus vector (33x1) over 

the 33 attributes for the ith session and the jth set. The element 

Fi,j(k) indicates if the kth kinematic attribute (ref. Section 6.1) is 

directly trained in the ith session and the jth set. If yes, Fi,j(k) equals 

one, otherwise, Fi,j(k) equals zero. At the beginning of every 

training set, the rehabilitation team annotates the focusing 

attribute groups (ref. Table 2). If an attribute group is focused, all 

attributes in this group have value one on the corresponding 

elements of the task focus vector Fi,j. Therefore, the element of 

training vector T(i) equals the number of sets in which the ith 

kinematic attribute is directly trained. We normalize the training 

vector by dividing the maximum component. Thus, each 

component of the training vector represents the percentage of 

training efforts of the corresponding attribute compared to the 

most focusing attribute. 

7.2.2 Computing Deficit-Training Correlation 
We compute the cross correlation of training vector T and the 

average deficit vector over four targets in the pre-test as the 

deficit-training correlation: 
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where dm
pre is the deficit vector (ref. eq. <4>) for the mth target in 

the pre-test and T is the training vector (ref. eq.<8>). dm,k
pre is the 

deficit for the kth attribute for the mth target for pre-test. Tk is the 

kth element of the training vector (ref. eq.<8>). M is the number of 

the targets (M=4) and K is the number of attributes (K=33). If the 

deficit and training have the similar trend, the deficit-training 

correlation is close to 1. If they are in the opposite trend, the 

deficit-training correlation is close to -1. 

7.3 Training-Improvement Correlation 
The training-improvement (TI) correlation measures how much 

the training and the improvement align together. We use two 

measures – (a) observed expected improvement ratio (TIR) and (b) 

observed expected improvement overlapping rate (TIOR) to 

compute the correlation between training and improvement. 

7.3.1 Observed Expected Improvement Ratio (TIR) 
The observed expected improvement ratio is the ratio of observed 

improvement and expected improvement. The observed 

improvement is computed using eq.<6>. The expected 

improvement is the expectation from the training that is computed 

by using the deficit in the pre-test and the training vector T (ref. 

eq.<8>). The expected improvement Em,k for the kth kinematic 

attribute for the mth target is computed as follows: 
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where dm,k
pre is the deficit for the kth attribute for the mth target in 

the pre-test, Tk is the kth element of the normalized training vector. 

The element corresponding to the most focused attribute in the 

training vector has the maximum value – one. α is the expectation 



scalar that indicates the expected improvement percentage for the 

most focused attribute. In this paper, we select α = 0.65 from the 

therapist’s intuition. For stroke patients, the most focused attribute 

(Tk=1) in the pre-test is usually further away dead zone by more 

than one time of sensitivity (e.g. x>α++th+ in the right sided deficit 

ref. Section 6.2). The therapist expects this attribute to be 

improved within quarter time of sensitivity close to the dead zone 

(e.g. x<0.25α++th+). Hence, α = 0.65. 

The observed expected improvement ratio (TIR) is computed as 

follows: 
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where dm,k
pre and dm,k

post are deficits for the kth attribute for the mth 

target for the pre-test and the post-test respectively, wa
m,k is the 

attribute weight for the kth attribute for the mth target, Tk is the kth 

element of the normalized training vector and α is the expectation 

scalar. If the observed expected improvement ratio is larger than 

one, the actual improvement is better than the expectation. Figure 

10 (left) visualizes the computation of TIR. 

 

Figure 10. Training-Improvement (TI) correlation. Left: observed 

expected improvement ratio TIR, Right: observed expected 

improvement overlapping rate TIOR. 

The observed expected improvement ratio tells us if the observed 

improvement is better than the expectation. However, it does not 

show if the observed improvement distribution over 33 kinematic 

attributes aligns to the expected improvement distribution. We 

shall address this using observed expected improvement 

overlapping rate (TIOR) in the following section. 

7.3.2 Observed Expected Improvement Overlapping 

Rate (TIOR) 
We use the observed expected improvement overlapping rate 

(TIOR) to measure the alignment between the observed 

improvement distribution and the expected improvement 

distribution over 33 kinematic attributes. The basic idea is to scale 

the expected improvement such that the overall expected 

improvement equals the overall observed improvement and to 

compute the overlapping between the observed improvement and 

scaled expected improvement over 33 kinematic attributes. Figure 

10 (right) illustrates the computation diagram. The scalar is 

computed as follows: 
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where dm,k
pre and dm,k

post are the deficits for the kth attribute for the 

mth target for the pre-test and the post-test respectively, wa
m,k is the 

attribute weight for the kth attribute for the mth target and Tk is the 

kth element of the normalized training vector. Then, we compute 

the overlapping rate (TIOR) of observed improvement distribution 

and the scaled expected improvement distribution as follows: 
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where h(·) is a cut-off function (ref. eq.<2>). For the best case that 

the observed improvement and the expected improvement have 

the same distribution over 33 kinematic attributes, the overlapping 

rate equals one. For the worst case that attributes focused in the 

training have no improvement, the overlapping rate is zero. 

8. EXPERIMENTAL RESULTS 
We now discuss the experimental results. Our mixed reality 

rehabilitation system has been installed in the Banner Baywood 

Medical Center. Four stroke patients were recruited for the study. 

Two stroke patients (subject 1 and 2) experienced mediated 

therapy using our adaptive mixed reality rehabilitation system. 

They were unfamiliar with the system prior to the rehabilitation. 

The other two stroke patients (subject 3 and 4) are in the control 

group. They did traditional therapy. The age, sex and stroke 

severity for four subjects are listed in Table 3. All four patients 

were suffered stroke in the right arm. They did fourteen training 

sessions in one month. Each session lasted approximately 1.5 

hours. The rehabilitations are lead by a therapist who has one year 

experience of using our system. For all four stroke patients, the 

first session is the pre-test and the last session is the post-test. In 

both pre-test and post-test, they have four sets of reaching for four 

different targets (i.e. SI, SM, AGI, AGM in section 3.1). For each 

subject, the four targets in the pre-test and the post-test are exactly 
same. 

Table 3. Stroke patient information 

Subject Group Age Sex Severity 

1 mediated aged M severe 

2 mediated Middle aged F moderate 

3 control aged M mild 

4 control aged M mild 

8.1 Results of Computational Kinematic 

Deficit Index 
We now show the deficit results for pre-test and post-test 

computed using eq.<5>. Table 4 shows the deficit results for the 

four subjects for four different targets (SI, SM, AGI and AGM ref. 

Section 3.1) for both pre-test and post-test. We can see that our 

deficit measure agrees with the stroke severity of the patients. In 

the pre-test, the severe stroke patient (subject 1) has higher deficit 

value 0.685, the moderate patient (subject 2) has the middle 

deficit value 0.201 and the two mild patients (subject 3 and 4) 

have lower deficit values 0.105 and 0.126. This shows that our 

deficit measure aligns to the clinical stroke severity.  

We can also see that the two stroke patients experiencing the 

mediated therapy using our system have significant improvement 

(i.e. reducing deficit) in reaching and grasping movement for all 

four target positions. This indicates that our system helps them 

learn a generative movement plan for reaching and grasping task. 

We observe that two stroke patients who took traditional therapy 



improved in some targets but got worse in other targets. In 

average, their deficit values increase a little. This strongly 

supports the ability of adaptive mediated therapy using our system 

to lead to faster and more integrated recovery in terms of both 

activity accomplishment and performance. 

Table 4. Deficit results for four subjects for pre-test and post-test 

for four targets (SI, SM, AGI and AGM) using eq.<5>. The deficit 

value for the subject 4 for the target SI in post-test is not available 

due to the system failure 

Subject ID SI SM AGI AGM Average 

1 

(mediated) 

pre 0.716 0.627 0.658 0.740 0.686 

post 0.258 0.294 0.416 0.432 0.351 

2 

(mediated) 

pre 0.158 0.231 0.193 0.219 0.201 

post 0.096 0.125 0.163 0.102 0.122 

3  

(control) 

pre 0.087 0.121 0.100 0.111 0.105 

post 0.127 0.138 0.075 0.156 0.124 

4  

(control) 

pre 0.102 0.164 0.127 0.112 0.126 

post --- 0.104 0.136 0.195 0.145 

8.2 Results of Deficit-Training-Improvement 

(DTI) Correlation 
We now discuss the deficit-training-improvement (DTI) 

correlation results. The DI correlation is computed for all four 

subjects and the DT and TI correlations are only computed for two 

subjects in the mediated group. This is because the two control 

subjects have no computational training representation T (eq.<8>) 

that is only available for mediated training. We first show the 

deficit-improvement correlation (eq.<7>). Then we present the 

deficit-training correlation results (eq.<9>) and the training-

improvement correlation results (eq.<11> <13>).  

8.2.1 Deficit-Improvement Correlation (DI) 
Table 5 shows the deficit-improvement (DI) correlation results for 

four stroke patients. Figure 11 shows the deficit-improvement plot 

for the four sets of reaching for four different targets (i.e. SI, SM, 

AGI and AGM ref. Section 3.1). We observe that the two subjects 

in mediated group have significant improvement (DI values are 

more than +39%) and the movement performance of two subjects 

in the control group decreases (DI values are less than -8%). This 

indicates that our adaptive mixed reality system is very helpful 

and efficient for stroke patients to learn a generative movement 

plan for reaching and grasping task.  
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Figure 11. Deficit-Improvement plot. 

Table 5. Deficit-Improvement (DI) correlation results for four 

stork patients. The improvement and DI correlation are computed 

using eq.<6> and eq.<7> respectively.  

Subject Improvement Deficit-Improvement (DI) 

1 (mediated) +0.335 +48.84% 

2 (mediated) +0.079 +39.29% 

3 (control) -0.019 -18.31% 

4 (control) -0.011 -8.06% 

8.2.2 Deficit-Training Correlation (DT) 
The deficit-training (DT) correlation (ref. eq.<9>) results for 

subject 1 and subject 2 are 63.16% and 45.29% respectively. 

Figure 12 shows the average deficit vector (ref eq. <4>) in the 

pre-test and the training vector (ref. eq. <8>). We can see that the 

deficit and training are well correlated for both subjects. In 

practice, we understand the deficit and training are not fully 

aligned (100% correlated). This is because of two reasons: 

1. The rate of improvement is different over kinematic attributes. 

Therefore the training efforts for different kinematic attributes 

might be different although they have the same deficit value in 

the pre-test.  

2. The correlation between the 33 kinematic attributes is not 

known. It is very possible that when the training focuses on 

some attributes, other attributes are also improved accompany 

with the focusing attributes. It is also possible that the 

improvement of the attributes in focus in the current task 

makes worse the movement performance of other attributes. 

Therefore, we expect the deficit training correlation to be high but 

not necessary to be perfect. 

Subject 1 Subject 2

Deficit of 33 kinematic attributes in the pre-test
Normalized training vector

 

Figure 12. Deficit and training over the 33 kinematic attributes. 

The deficit vector is the average over four targets in the pre-test. 

The deficit vector for each target is computed using eq.<4>. The 

training vector is computed using eq. <8>. 

8.2.3 Training-Improvement Correlation (TI) 
We now show the training-improvement (TI) correlation results 

for two subjects in the mediated group. Table 6 shows the results 

for the observed expected improvement ratio (ref. Section 7.3.1) 

and observed expected improvement overlapping rate (ref. Section 

7.3.2). We can see that the actual improvement is better than the 

expectation for both subjects (improvement expectation ratio TIR 

is above one). We also observe that the actual improvement is 

well aligned to the expectation for the moderate stroke patient 

(subject 2). The overlapping rate is 69.66%. For subject 1, the 

overlapping rate is lower (53.39%). This is because for the severe 

stroke patient, it is difficult to improve some kinematic attributes 

such as velocity bellness (i.e. the bell shape of the velocity 

profile) within one month rehabilitation. For subject 1, although 

the velocity bellness is improved in the post-test compared to the 

pre-test, the velocity bellness value is still far from the dead zone. 

Therefore, the observed improvement cannot meet the 

expectation. However, for subject 1, some other attributes such as 

joint range of motion improve much more than the expectation. 



When we compute the weighted summation over 33 kinematic 

attributes, subject 1 improves 1.545 times of expectation 

(improvement expectation ratio TIR is 1.545).  

Table 6. Training-Improvement (TI) correlation results for two 

subjects who did mediated therapy. The observed expected 

improvement ratio TIR and the observed expected improvement 

overlapping rate TIOR are computed using eq.<11> and eq.<13> 

respectively. 

Subject TIR TIOR 

1 1.545 53.39% 

2 1.055 69.66% 

Figure 13 compares the average improvement to the expectation 

over 33 attributes. We can see that the actual improvement for 

subject 1 is better than the expectation for most of the attributes 

except attribute 11–14. They are three velocity bellness measures 

and velocity jerk-cost. They are too hard for a severe stroke 

patient to improve close to the dead zone in one month therapy. 

For subject 2, the improvement and expectation are well aligned. 

Subject 1 Subject 2

Observed Improvement (average of four targets)

Expected improvement (average of four targets)

 

Figure 13. Observed improvement and expected improvement 

over 33 kinematic attributes. The observed improvement is the 

average improvement over four targets. The expected 

improvement is computed using eq. <10>. 

9. CONCLUSION 
This paper presents novel system architecture and evaluation 

metrics for an adaptive mixed reality rehabilitation (AMRR) 

system for stroke patient. Our system not only encourages stroke 

patients to learn a generative reaching and grasping movement 

plan, but also helps the rehabilitation team customize the training 

strategy. There are three contributions in this paper: (a) the 

computational deficit index for evaluating the patient’s kinematic 

performance and deficit-training-improvement (DTI) correlation 

for evaluating the adaptive training strategy, (b) developing 

assistive adaptation tools in the system, and (c) integrating the 

interactive feedback environment with physical space to promote 

learning of generalizable movement strategies and transferring 

knowledge from media space to physical space. Results from our 

study show that the two stroke patients who experienced mediated 

therapy have greater significant improvement than the two stroke 

patients who experienced traditional therapy. This strongly 

supports the ability of mediated therapy to lead to faster and more 

integrated recovery in both activity accomplishment and 

performance. Future research includes (a) analyzing the 

correlation between different rehabilitation environments (virtual, 

hybrid and physical) and movement performance improvement, 

(b) discovering the structure in adaptive training and kinematic 

movement and their structural correlation, and (c) recommending 

the training sequence or strategy to the therapist. 
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